scholarly journals DEVELOPING A PREDICTION MODEL FOR TENSILE ELASTIC MODULUS OF STEEL FIBER – CEMENT STABILIZED LATERITE USED AS PAVEMENT MATERIAL

2017 ◽  
Vol 06 (07) ◽  
pp. 108-112
Author(s):  
Emmanuel O. Ekwulo .
2009 ◽  
Vol 79-82 ◽  
pp. 1699-1702
Author(s):  
Xiao Peng Gao ◽  
Fu Shun Liu

The phase transformation characteristics, the dynamic elastic modulus and the static tensile elastic modulus of Ti50Ni47.5Fe2.5 alloy were investigated. It is found that, the two mutations in the dynamic elastic modulus is caused by reverse martensite phase transformation and austenite phase transformation respectively; Static tensile test can not reflect the intrinsic elastic modulus when the test temperature is close to martensite transformation temperature(Ms). The static elastic modulus and the dynamic elastic modulus have the same trend when the test temperature is enough higher than Ms.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Yan Zhang ◽  
Dawei Yu

Rock material has different mechanical behaviors under compressive and tensile loading. Correspondingly, there are two types of elastic modulus: compressive elastic modulus Ec and tensile elastic modulus Et, respectively. To distinguish which indirect test methodology, including three-points bending test and Brazilian disc test, is more suitable to measure the tensile elastic modulus Et of rock materials, a series of uniaxial compressive test (UCT), direct tensile test (DTT), three-points bending test, and Brazilian disc test are performed for three typical types of rock: marble, granite, and sandstone. Comparative investigation on the reliability of measurement results of tensile elastic modulus Et is systematically conducted. Finally, it is found that Brazilian disc test could be a suitable method to measure tensile elastic modulus of rock materials, due to the excellent agreement with that measured by DTT and the simplicity of sample preparation, as well as test operation.


2012 ◽  
Vol 174-177 ◽  
pp. 721-725 ◽  
Author(s):  
Ming Bao Gao ◽  
Yan Ru Zhao ◽  
Xiao Yan He

With the fast freeze-thaw test method, the c50 steel fiber self-compacting concrete was carried out 300 tests of freeze-thaw cycle. In the process of freeze-thaw cycles, it determined by the quality of the concrete specimen, dynamic elastic modulus and strength, and analyzed the steel fibers and their different contents on frost resistance of self-compacting concrete impact. The results showed that: steel fiber self-compacting concrete in freeze-thaw cycle can play constrained role in the quality loss, dynamic elastic modulus and intensity, and can significantly improve the self-compacting concrete frost resistance. Within a certain range, the more steel fiber, the stronger of frost resistance.


2012 ◽  
Vol 598 ◽  
pp. 388-392
Author(s):  
Hong Qiang Chu ◽  
Lin Hua Jiang ◽  
Ning Xu ◽  
Chuan Sheng Xiong

The mechanical properties of C100 high-strength concrete used for frozen shaft were studied in this research. The results demonstrate that: The cementitious materials 570kg/m3 concrete 28 strength is only 104.5MPa, which is lower than the C100 requirements; the early strength (3d) of the concrete doped with 30% admixture is less than 20% admixture concrete, but with the age increase, its strength gradually reaches close to concrete doped with 20% admixture, and eventually exceeds the concrete doped with 20% admixture.The tension-compression of high strength concrete doped with 15% fly ash and 15% slag is the smallest, while the tension-compression of the concrete doped 10% fly ash and 10% slag reaches the maximum.The Poisson's ratio of C100 concrete is between 0.20 and 0.24; the compressive elastic modulus is about 50GPa; and the tensile elastic modulus is about 110GPa.


2021 ◽  
Vol 261 ◽  
pp. 02019
Author(s):  
Tu-Sheng He ◽  
Meng-Qian Xie ◽  
Yang Liu ◽  
San-Yin Zhao ◽  
Zai-Bo Li

The influence of steel fiber and polypropylene fiber mixed on compressive strength of high performance concrete (HPC) was studied. The steel fiber content (0.5%, 1.0%, 1.5%, 2.0%) (volume fraction, the same below), polypropylene fiber content (0.05%, 0.1%, 0.15%, 0.2%) and length (5mm, 6.5mm, 12mm, 18mm) were studied by L16 (45) orthogonal test for 28d ages, the range analysis and variance analysis of the test results are carried out, and the prediction model of compressive strength of hybrid fiber reinforced concrete was established. The results show that: The significant influence factor of concrete compressive strength is the volume fraction of polypropylene fiber, while the length of polypropylene fiber and the volume fraction of steel fiber are not significant; the concrete compressive strength with polypropylene fiber shows negative hybrid effect; The prediction model of compressive strength of hybrid fiber reinforced concrete has high accuracy, and the average relative errors is 2.96%.


Sign in / Sign up

Export Citation Format

Share Document