Atomistic simulation of the uniaxial compression of black phosphorene nanotubes

Author(s):  
Van-Trang Nguyen ◽  
Minh-Quy Le

We study through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of (0, 24) armchair and (31, 0) zigzag black phosphorene nanotubes with approximately equal diameters. Young's modulus, critical stress and critical strain are estimated with various tube lengths. It is found that under uniaxial compression the (0, 24) armchair black phosphorene nanotube buckles, whereas the failure of the (31, 0) zigzag one is caused by local bond breaking near the boundary.

2011 ◽  
Vol 03 (01n02) ◽  
pp. 39-47 ◽  
Author(s):  
R. NEUGEBAUER ◽  
R. WERTHEIM ◽  
U. SEMMLER

On cutting tools for high performance cutting (HPC) processes or for hard-to-cut materials, there is an increased importance in so-called superlattice coatings with hundreds of layers each of which is only a few nanometers in thickness. Homogeneity or average material properties based on the properties of single layers are not valid in these dimensions any more. Consequently, continuum mechanical material models cannot be used for modeling the behavior of nanolayers. Therefore, the interaction potentials between the single atoms should be considered. A new, so-called atomic finite element method (AFEM) is presented. In the AFEM the interatomic bonds are modeled as nonlinear spring elements. The AFEM is the connection between the molecular dynamics (MD) method and the crystal plasticity FEM (CPFEM). The MD simulates the atomic deposition process. The CPFEM considers the behavior of anisotropic crystals using the continuum mechanical FEM. On one side, the atomic structure data simulated by MD defines the interface to AFEM. On the other side, the boundary conditions (displacements and tractions) of the AFEM model are interpolated from the CPFEM simulations. In AFEM, the lattice deformation, the crack and dislocation behavior can be simulated and calculated at the nanometer scale.


2014 ◽  
Vol 28 (20) ◽  
pp. 1450135 ◽  
Author(s):  
Zhiguo Wang ◽  
G. Q. Yin ◽  
Liming Jing ◽  
Jianjian Shi ◽  
Zhijie Li

The tensile behavior of single crystalline GaN nanotube bundles was studied using classical molecular dynamics. Stillinger–Weber potential was used to describe the atom–atom interactions. The GaN bundles consisted of several individual GaN nanotubes with {100} side planes. The simulation results show that the nanotube bundles show a brittle to ductile transition (BDT) by changing the temperatures. The fracture of GaN nanotube bundles is ruled by a thermal activated process, higher temperature will lead to the decrease of the critical stress. At high temperatures the individual nanotube in the bundles interact with each other, which induces the increase of the critical stress of bundles.


Sign in / Sign up

Export Citation Format

Share Document