scholarly journals A closed-form solution for free vibration of multiple cracked Timoshenko beam and application

2017 ◽  
Vol 39 (4) ◽  
pp. 315-328
Author(s):  
Nguyen Tien Khiem ◽  
Duong The Hung

A closed-form solution for free vibration is constructed and used for obtaining explicit frequency equation and mode shapes of  Timoshenko beams with arbitrary number of cracks. The cracks are represented by the rotational springs of stiffness calculated from the crack depth.  Using the obtained frequency equation, the sensitivity of natural frequencies to crack of the beams is examined in comparison with the  Euler-Bernoulli beams. Numerical results demonstrate that the Timoshenko beam theory is efficiently applicable not only for short or fat beams but also for the long or slender ones. Nevertheless, both the theories are equivalent in sensitivity analysis of fundamental frequency to cracks and they get to be different for higher frequencies.

2010 ◽  
Vol 54 (01) ◽  
pp. 15-33
Author(s):  
Jong-Shyong Wu ◽  
Chin-Tzu Chen

Under the specified assumptions for the equation of motion, the closed-form solution for the natural frequencies and associated mode shapes of an immersed "Euler-Bernoulli" beam carrying an eccentric tip mass possessing rotary inertia has been reported in the existing literature. However, this is not true for the immersed "Timoshenko" beam, particularly for the case with effect of axial load considered. Furthermore, the information concerning the forced vibration analysis of the foregoing Timoshenko beam caused by wave excitations is also rare. Therefore, the first purpose of this paper is to present a technique to obtain the closed-form solution for the natural frequencies and associated mode shapes of an axial-loaded immersed "Timoshenko" beam carrying eccentric tip mass with rotary inertia by using the continuous-mass model. The second purpose is to determine the forced vibration responses of the latter resulting from excitations of regular waves by using the mode superposition method incorporated with the last closed-form solution for the natural frequencies and associated mode shapes of the beam. Because the determination of normal mode shapes of the axial-loaded immersed "Timoshenko" beam is one of the main tasks for achieving the second purpose and the existing literature concerned is scarce, the details about the derivation of orthogonality conditions are also presented. Good agreements between the results obtained from the presented technique and those obtained from the existing literature or conventional finite element method (FEM) confirm the reliability of the presented theories and the developed computer programs for this paper.


1999 ◽  
Vol 121 (2) ◽  
pp. 256-258 ◽  
Author(s):  
S. Karunendiran ◽  
J. W. Zu

This paper presents an analytical method adopted for the free vibration analysis of a shaft, both ends of which are supported by resilient bearings. The shaft is modeled by Timoshenko beam theory. Based on this model exact frequency equation to calculate complex eigenvalues is derived and presented in complex compact form for the first time. Explicit expressions to compute the corresponding mode shapes are also presented.


2017 ◽  
Vol 17 (08) ◽  
pp. 1750093 ◽  
Author(s):  
Jae-Hoon Kang

This paper studies the viscously damped free and forced vibrations of longitudinal and torsional bars. The method is exact and yields closed form solution for the vibration displacement in contrast with the well-known eigenfunction superposition (ES) method, which requires expression of the distributed forcing functions and displacement response functions as infinite series sums of free vibration eigenfunctions. The viscously damped natural frequency equation and the critical viscous damping equation are exactly derived for the bars. Then the viscously damped free vibration frequencies and corresponding damped mode shapes are calculated and plotted, aside from the undamped free vibration and corresponding mode shapes typically computed and used in vibration problems. The longitudinal or torsional amplitude versus forcing frequency curves showing the forced response to distributed loadings are plotted for various viscous damping parameters. It is found that the viscous damping affects the natural frequencies and the corresponding mode shapes of longitudinal and torsional bars, especially for the fundamental frequency.


2000 ◽  
Vol 123 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Lixin Zhang ◽  
Jean W. Zu ◽  
Zhichao Hou

A linear damped hybrid (continuous/discrete components) model is developed in this paper to characterize the dynamic behavior of serpentine belt drive systems. Both internal material damping and external tensioner arm damping are considered. The complex modal analysis method is developed to perform dynamic analysis of linear non-self-adjoint hybrid serpentine belt-drive systems. The adjoint eigenfunctions are acquired in terms of the mode shapes of an auxiliary hybrid system. The closed-form characteristic equation of eigenvalues and the exact closed-form solution for dynamic response of the non-self-adjoint hybrid model are obtained. Numerical simulations are performed to demonstrate the method of analysis. It is shown that there exists an optimum damping value for each vibration mode at which vibration decays the fastest.


2000 ◽  
Author(s):  
Arnoldo Garcia ◽  
Arnold Lumsdaine ◽  
Ying X. Yao

Abstract Many studies have been performed to analyze the natural frequency of beams undergoing both flexural and torsional loading. For example, Adam (1999) analyzed a beam with open cross-sections under forced vibration. Although the exact natural frequency equation is available in literature (Lumsdaine et al), to the authors’ knowledge, a beam with an intermediate mass and support has not been considered. The models are then compared with an approximate closed form solution for the natural frequency. The closed form equation is developed using energy methods. Results show that the closed form equation is within 2% percent when compared to the transcendental natural frequency equation.


Sign in / Sign up

Export Citation Format

Share Document