scholarly journals DESIGNING AND CLONING NA GENE OF INFLUENZA A/H5N1 VIRUS INTO pHW2000 VECTOR FOR PREPARATION OF A CANDIDATE VACCINE MASTERSEED STRAIN

2018 ◽  
Vol 16 (2) ◽  
pp. 369-376
Author(s):  
Nguyen Thi Thu Hang ◽  
Hoang Thi Thu Hang ◽  
Nguyen Hung Chi ◽  
Vu Huyen Trang ◽  
Chu Hoang Ha ◽  
...  

The influenza A/H5N1 virus is an RNA virus belonging to the family of Orthomyxoviridae. The highly pathogenic influenza A/H5N1 virus exhibit the ability to cause high mortality in poultry and infect humans. Technology for vaccine seed strain production of influenza A virus using reverse genetics requires the creation of recombinant vectors carrying viral genomic segments. To create recombinant pHW2000 vectors containing the neuraminidase (NA) gene segment encoding an important surface antigen of influenza A virus, two N1 NA gene structures were designed based on the NA gene sequences of two subtypes of highly pathogenic influenza A/H5N1 clade (clade 1.1 and clade 2.3.2.1c) and then inserted into pHW2000 vector. These two clades of highly pathogenic avian influenza viruses that are still circulating in Vietnam, with antigen homology and genetic relationships to many strains of influenza A viruses, have been suggested to be used for producing vaccines against emerging avian influenza A/H5N1 virus. Each NA gene construct consists of 1453 nucleotides in which two ends of the gene are two non-coding regions (46 nucleotides and 57 nucleotides) containing primer binding site and cleavage site of BsaI. In the middle of each NA gene is one region of 1350 nucleotides encoding 449 amino acids, ensuring catalytic function and antigenicity of NA protein. Two NA segments corresponding to the two clades of influenza A viruses were successfully cloned into pHW2000 vectors for the generation of two recombinant vectors pHW2000-NA clade 1.1 and pHW2000-NA clade 2.3.2.1c. These recombinant vectors will be used for production of candidate avian influenza vaccine strains using reverse genetics technique.

Author(s):  
Nguyen Thi Thu Hang ◽  
Hoang Thi Thu Hang ◽  
Nguyen Hung Chi ◽  
Chu Hoang Ha ◽  
Nguyen Trung Nam

Influenza A/H5N1 virus evolves rapidly and generate new variants, therefore it is essential to develop effective vaccines against the currently circulating influenza strains. Among clades and subclades of highly pathogenic avian influenza (HPAI) H5N1 viruses circulating in Vietnam, H5N1 clade 1.1 and clade 2.3.2.1c possess genetic relationships to many strains of influenza; thus they are suggested to be used for producing vaccines against avian influenza. In this article, two HA gene segments of two types of A/H5N1 influenza clade have been designed: HA clade 1.1 gene consists 1825 nucleotides encoding 565 amino acids, HA clade 2.3.2.1c gene consists 1822 nucleotides, encoding 564 amino acids. Most importantly, nucleotide sequence of the pathogenic region of HA was removed. Each of the two HA segments corresponding to the two clades were successfully cloned into pHW2000 vector and will be used as a candidate for production of avian influenza vaccines using reverse genetics technique.  


2017 ◽  
Vol 56 (4) ◽  
pp. 339
Author(s):  
C. S. KYRIAKIS (Κ. ΣΠ. ΚΥΡΙΑΚΗΣ) ◽  
K. Van REETH

The huge epizootics of highly pathogenic avian influenza (subtype H5N1) in Southeastern Asia over the last two years and especially the transmission of avian influenza viruses to humans have alerted the international scientific community. Many support that the threat of a new influenza pandemic appears greater today than ever before. During the 20th century, humanity has faced three pandemics, including the "Spanish flu" of 1918-19, which claimed over 20 to 40 million lives, and two less dramatic pandemics in 1957-58 and 1968-69. Influenza A viruses are single stranded RNA viruses belonging to the family Orthomyxoviridae. Their genome expresses only 10 proteins, most important of which are the two surface glycoproteins: haemagglutinin (HA) and neuraminidase (NA). So far, 16 different types of haemagglutinin (HI to Η16) and 9 of neuraminidase (Nl to N9) have been recognized. Influenza A viruses are grouped into "subtypes", according to the HA and NA surface proteins they bear (for example Η I N I , H5N2). Natural reservoirs of influenza A viruses are the wild aquatic birds (migratory waterfowl), from which all types of HA and NA have been isolated. It is important to mention that migratory waterfowl do not show clinical signs of disease, but shed the virus through their excretions.The host range of flu viruses includes domestic poultry, and mammalian species from aquatic mammals to horses, humans and swine. Because of their segmented single stranded RNA genome, influenza viruses have a very high mutation rate (genetic drift) and the possibility to undergo reassortment. Reassortment may occur when more than one virus co-infect the same cell, exchange genes and as a result, provide a totally new influenza virus (genetic shift). At least two subtypes of influenza A viruses are currendy endemic within the human population (H1N1 and H3N2), causing every year outbreaks of disease with very low mortality, especially in elders. Unlike these endemic viruses, pandemic viruses have a much higher morbidity, affecting people of all ages. Η I N I , H3N2 and H1N2 influenza viruses are currently circulating in the European and American swine population. Some of the swine influenza virus subtypes, namely Η I N I and H3N2, are thus similar to those of humans, but there are still important antigenic differences between them. Only rarely swine influenza viruses may be transmitted or cause disease to humans. Unlike mammalian influenza viruses, influenza viruses of domestic birds are grouped in two "pathotypes": low pathogenic avian influenza (LPAI) viruses, which cause localized infections and remain mild or subclinical, and highly pathogenic avian influenza (HPAI) viruses, which cause severe general infection with mortality up to 100% (fowl plague). The majority of avian influenza viruses are low pathogenic and only some, but not all, viruses of H5 and H7 subtypes are highly pathogenic. Occasionally low pathogenic Η5 or H7 viruses from wild birds transmit to poultry. Such viruses can undergo mutations in poultry as a result of which they may acquire a highly pathogenic phenotype. Until the recent avian influenza epizootics in Asia, the predominant theory for the creation of a pandemic virus supported that the pig was likely to act as an intermediate host for transmission of influenza viruses from birds to humans. The fact that genetic reassortment between human and avian viruses has also been shown to occur in pigs in nature, had led to the hypothesis that the pandemic viruses of 1957 and 1968 may have been generated through the pig. More recent data, however, come to question these theories and hypotheses: (a)the direct transmission of the H5N1 and H7N7 avian influenza viruses from birds to humans in Southeastern Asia and The Netherlands, and (b) the presence of cellular receptors recognized preferentially by the haemagglutinin of avian influenza viruses in the human conjunctiva and ciliated respiratory epithelial cells, which support that avian influenza viruses can be transmitted in toto (without reassortment) to and between humans or that humans can be the mixing vessel themselves. Furthermore, there is no solid scientific evidence to prove that any influenza virus reassortants, that have originated in swine, have posed a risk for humans. There are three criteria (conditions) an influenza virus must fulfill in order to be characterized as a pandemic virus: (a) it must be a new virus against which humans are immunologically naive, (b) it must be able to replicate in humans causing severe disease, and (c) it must be efficiendy transmitted among humans, causing wide outbreaks. So far the H5N1 influenza virus only fulfills the first and second condition, and even though it has been sporadically infecting humans for over two years, it has not yet been able to fully adapt to it's new host. Compared to the human population that may have been exposed to the H5N1 influenza virus in Asia, the number of patients and fatalities due to the H5N1 virus is very small. So far, it appears that swine do not play an important role in the epidemiology of this specific virus. Experimental infections of swine with highly pathogenic H5N1 virus have shown that it does not replicate extensively in pigs. Additionally, extensive serological investigations in the swine population of Viet Nam, indicated that the H5N1 virus merely spread to a very small number (~0.25%) of contact animals within the epizootic regions. Nevertheless, it is critical to continue monitor ring pigs and studying the behavior and spread of influenza viruses in these species.


Acta Naturae ◽  
2017 ◽  
Vol 9 (3) ◽  
pp. 48-54 ◽  
Author(s):  
T. A. Timofeeva ◽  
M. N. Asatryan ◽  
A. D. Altstein ◽  
B. S. Narodisky ◽  
A. L. Gintsburg ◽  
...  

The influenza A virus remains one of the most common and dangerous human health concerns due to its rapid evolutionary dynamics. Since the evolutionary changes of influenza A viruses can be traced in real time, the last decade has seen a surge in research on influenza A viruses due to an increase in experimental data (selection of escape mutants followed by examination of their phenotypic characteristics and generation of viruses with desired mutations using reverse genetics). Moreover, the advances in our understanding are also attributable to the development of new computational methods based on a phylogenetic analysis of influenza virus strains and mathematical (integro-differential equations, statistical methods, probability-theory-based methods) and simulation modeling. Continuously evolving highly pathogenic influenza A viruses are a serious health concern which necessitates a coupling of theoretical and experimental approaches to predict the evolutionary trends of the influenza A virus, with a focus on the H5 subtype.


2005 ◽  
Vol 79 (15) ◽  
pp. 9926-9932 ◽  
Author(s):  
Kyoko Shinya ◽  
Masato Hatta ◽  
Shinya Yamada ◽  
Ayato Takada ◽  
Shinji Watanabe ◽  
...  

ABSTRACT In 2003, H5N1 avian influenza virus infections were diagnosed in two Hong Kong residents who had visited the Fujian province in mainland China, affording us the opportunity to characterize one of the viral isolates, A/Hong Kong/213/03 (HK213; H5N1). In contrast to H5N1 viruses isolated from humans during the 1997 outbreak in Hong Kong, HK213 retained several features of aquatic bird viruses, including the lack of a deletion in the neuraminidase stalk and the absence of additional oligosaccharide chains at the globular head of the hemagglutinin molecule. It demonstrated weak pathogenicity in mice and ferrets but caused lethal infection in chickens. The original isolate failed to produce disease in ducks but became more pathogenic after five passages. Taken together, these findings portray the HK213 isolate as an aquatic avian influenza A virus without the molecular changes associated with the replication of H5N1 avian viruses in land-based poultry such as chickens. This case challenges the view that adaptation to land-based poultry is a prerequisite for the replication of aquatic avian influenza A viruses in humans.


2007 ◽  
Vol 13 (11) ◽  
pp. 1667-1674 ◽  
Author(s):  
Michael Lierz ◽  
Hafez M. Hafez ◽  
Robert Klopfleisch ◽  
Dörte Lüschow ◽  
Christine Prusas ◽  
...  

2020 ◽  
Vol 33 (1) ◽  
pp. 124-128
Author(s):  
Tanjin T. Mumu ◽  
Mohammed Nooruzzaman ◽  
Azmary Hasnat ◽  
Rokshana Parvin ◽  
Emdadul H. Chowdhury ◽  
...  

A mixed-aged flock of 130 turkeys in Bangladesh reported the sudden death of 1 bird in September 2017. Highly pathogenic avian influenza A(H5N1) virus was detected in 3 turkeys, and phylogenetic analysis placed the viruses in the reassortant clade 2.3.2.1a. The birds had clinical signs of depression, diarrhea, weakness, closed eyes, and finally death. The mortality rate of the flock was 13% over the 6 d prior to the flock being euthanized. At autopsy, we observed congestion in lungs and brain, hemorrhages in the trachea, pancreas, breast muscle, coronary fat, intestine, bursa of Fabricius, and kidneys. Histopathology revealed hemorrhagic pneumonia, hemorrhages in the liver and kidneys, and hemorrhages and necrosis in the spleen and pancreas. Significant changes in the brain included gliosis, focal encephalomalacia and encephalitis, and neuronophagia.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina Escalera-Zamudio ◽  
Michael Golden ◽  
Bernardo Gutiérrez ◽  
Julien Thézé ◽  
Jeremy Russell Keown ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20006-5


2015 ◽  
Vol 90 (1) ◽  
pp. 103-116 ◽  
Author(s):  
Graham A. D. Blyth ◽  
Wing Fuk Chan ◽  
Robert G. Webster ◽  
Katharine E. Magor

ABSTRACTInterferon-inducible transmembrane proteins (IFITMs) can restrict the entry of a wide range of viruses. IFITM3 localizes to endosomes and can potently restrict the replication of influenza A viruses (IAV) and several other viruses that also enter host cells through the endocytic pathway. Here, we investigate whether IFITMs are involved in protection in ducks, the natural host of influenza virus. We identify and sequence duckIFITM1,IFITM2,IFITM3, andIFITM5. Using quantitative PCR (qPCR), we demonstrate the upregulation of these genes in lung tissue in response to highly pathogenic IAV infection by 400-fold, 30-fold, 30-fold, and 5-fold, respectively. We express each IFITM in chicken DF-1 cells and show duck IFITM1 localizes to the cell surface, while IFITM3 localizes to LAMP1-containing compartments. DF-1 cells stably expressing duck IFITM3 (but not IFITM1 or IFITM2) show increased restriction of replication of H1N1, H6N2, and H11N9 IAV strains but not vesicular stomatitis virus. Although duck and human IFITM3 share only 38% identity, critical residues for viral restriction are conserved. We generate chimeric and mutant IFITM3 proteins and show duck IFITM3 does not require its N-terminal domain for endosomal localization or antiviral function; however, this N-terminal end confers endosomal localization and antiviral function on IFITM1. In contrast to mammalian IFITM3, the conserved YXXθ endocytosis signal sequence in the N-terminal domain of duck IFITM3 is not essential for correct endosomal localization. Despite significant structural and amino acid divergence, presumably due to host-virus coevolution, duck IFITM3 is functional against IAV.IMPORTANCEImmune IFITM genes are poorly conserved across species, suggesting that selective pressure from host-specific viruses has driven this divergence. We wondered whether coevolution between viruses and their natural host would result in the evasion of IFITM restriction. Ducks are the natural host of avian influenza A viruses and display few or no disease symptoms upon infection with most strains, including highly pathogenic avian influenza. We have characterized the duck IFITM locus and identified IFITM3 as an important restrictor of several influenza A viruses, including avian strains. With only 38% amino acid identity to human IFITM3, duck IFITM3 possesses antiviral function against influenza virus. Thus, despite long coevolution of virus and host effectors in the natural host, influenza virus evasion of IFITM3 restriction in ducks is not apparent.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e73200 ◽  
Author(s):  
Sharifa Nasreen ◽  
Salah Uddin Khan ◽  
Eduardo Azziz-Baumgartner ◽  
Kathy Hancock ◽  
Vic Veguilla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document