scholarly journals A REVIEW OF SEAGRASS STUDIES BY USING SATELLITE REMOTE SENSING DATA IN THE SOUTHEAST ASIA: STATUS AND POTENTIAL

2018 ◽  
Vol 55 (4C) ◽  
pp. 148
Author(s):  
Nguyen Thi Thien Huong

This review presents synthetic results of remote sensing application in monitoring and management of seagrass beds in the Southeast Asia region. The objective of this paper aims to evaluate the status and potential of using remote sensing technologies in seagrass mapping to enhance its effective utilization and management. The results showed that the number of studies in the application of remote sensing for seagrass are still limited, mainly from 2011 to 2017, which focus on habitat mapping (accounting for 62 %) and other studies on the detection of seagrass change in temporal (38 %). The number of studies on using medium and high resolution remote sensing images are approximately about 50 % and 44 %, respectively. Only 6 % studies used very high resolution remote sensing images. Finally, it is suggested that having more study in seagrass bed mapping by using remote sensing data is significant for understanding the variability of seagrass beds in the coastal areas for effective management and protection in the future.

2002 ◽  
Vol 8 (1) ◽  
pp. 15-22
Author(s):  
V.N. Astapenko ◽  
◽  
Ye.I. Bushuev ◽  
V.P. Zubko ◽  
V.I. Ivanov ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 2818
Author(s):  
Hai Sun ◽  
Xiaoyi Dai ◽  
Wenchi Shou ◽  
Jun Wang ◽  
Xuejing Ruan

Timely acquisition of spatial flood distribution is an essential basis for flood-disaster monitoring and management. Remote-sensing data have been widely used in water-body surveys. However, due to the cloudy weather and complex geomorphic environment, the inability to receive remote-sensing images throughout the day has resulted in some data being missing and unable to provide dynamic and continuous flood inundation process data. To fully and effectively use remote-sensing data, we developed a new decision support system for integrated flood inundation management based on limited and intermittent remote-sensing data. Firstly, we established a new multi-scale water-extraction convolutional neural network named DEU-Net to extract water from remote-sensing images automatically. A specific datasets training method was created for typical region types to separate the water body from the confusing surface features more accurately. Secondly, we built a waterfront contour active tracking model to implicitly describe the flood movement interface. In this way, the flooding process was converted into the numerical solution of the partial differential equation of the boundary function. Space upwind difference format and the time Euler difference format were used to perform the numerical solution. Finally, we established seven indicators that considered regional characteristics and flood-inundation attributes to evaluate flood-disaster losses. The cloud model using the entropy weight method was introduced to account for uncertainties in various parameters. In the end, a decision support system realizing the flood losses risk visualization was developed by using the ArcGIS application programming interface (API). To verify the effectiveness of the model constructed in this paper, we conducted numerical experiments on the model's performance through comparative experiments based on a laboratory scale and actual scale, respectively. The results were as follows: (1) The DEU-Net method had a better capability to accurately extract various water bodies, such as urban water bodies, open-air ponds, plateau lakes etc., than the other comparison methods. (2) The simulation results of the active tracking model had good temporal and spatial consistency with the image extraction results and actual statistical data compared with the synthetic observation data. (3) The application results showed that the system has high computational efficiency and noticeable visualization effects. The research results may provide a scientific basis for the emergency-response decision-making of flood disasters, especially in data-sparse regions.


2021 ◽  
Vol 10 (3) ◽  
pp. 185
Author(s):  
Chenyang Zhang ◽  
Qingli Shi ◽  
Li Zhuo ◽  
Fang Wang ◽  
Haiyan Tao

Information on the mixed use of buildings helps understand the status of mixed-use urban vertical land and assists in urban planning decisions. Although a few studies have focused on this topic, the methods they used are quite complex and require manual intervention in extracting different function patterns of buildings, while building recognition rates remain unsatisfying. In this paper, we propose a new method to infer the mixed use of buildings based on a tensor decomposition algorithm, which integrates information from both high-resolution remote sensing images and social sensing data. We selected the Tianhe District of Guangzhou, China to validate our method. The results show that the recognition rate of buildings can reach 98.67%, with an average recognition accuracy of 84%. Our study proves that the tensor decomposition algorithm can extract different function patterns of buildings unsupervised, while remote sensing data can provide key information for inferring building functions. The tensor decomposition-based method can serve as an effective and efficient way to infer the mixed use of buildings, which can achieve better results with simpler steps.


Sign in / Sign up

Export Citation Format

Share Document