scholarly journals Studies on biodegradation of organic waste in uasb reactor

2019 ◽  
pp. 513-525
Author(s):  
C. B. Majumder ◽  
Anil Kr. Mathur ◽  
Vedprakash Kapse

The industrialization in the developing countries causes severe problems in collection,treatment and disposal of organic effluents. The situation leads to public health andenvironmental problem. Therefore, various high rate anaerobic treatments has beenemerged as a variable alternative for the treatment of many industrial and domesticwastewater containing organic wastes. In this study high rate Upflow Anaerobic SludgeBlanket (UASB) reactor has been critically analyzed, discussed and designed as thesolution of above problem. According to that a UASB reactor has been fabricated forlaboratory study. The UASB system appeared to be economically cost effective ascompared to other systems. This paper also focuses on the principle of startup,operational performance, chemical oxygen demand (COD) removal efficiency, methaneproduction rate, and specific methanogenic activity in the UASB reactor. In the presentstudy, reactor was started initially with mixture of molasses and glucose (50% each)solution with organic loading rate (OLR) 0.933 g COD/L day. Thereafter, OLR is beingincreased in steps. After 15 days of startup of reactor, molasses solution was applied. Thetemperature (35e° C), pH (6.8±0.4), and nutrients requirement were maintained. In thisstudy COD: N: P ratio were maintained at 300: IO: l by adding urea for nitrogen andpotassium di-hydrogen phosphate for phosphorus. For a change of OLR up to 13.33gCOD/L day, all above-mentioned parameter were studied. The removal efficiency andgas production rate depend on activity of granules. A typical organic degrading granule iscomposed of micro-colonies of Methanothrix and several syntropic micro -colonies.

2019 ◽  
Vol 80 (8) ◽  
pp. 1505-1511 ◽  
Author(s):  
Nathalie Dyane Miranda Slompo ◽  
Larissa Quartaroli ◽  
Grietje Zeeman ◽  
Gustavo Henrique Ribeiro da Silva ◽  
Luiz Antonio Daniel

Abstract Decentralized sanitary wastewater treatment has become a viable and sustainable alternative, especially for developing countries and small communities. Besides, effluents may present variations in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total nitrogen values. This study describes the feasibility of using a pilot upflow anaerobic sludge blanket (UASB) reactor to treat wastewater with different organic loads (COD), using black water (BW) and sanitary wastewater, in addition to its potential for preserving nutrients for later recovery and/or reuse. The UASB reactor was operated continuously for 95 weeks, with a hydraulic retention time of 3 days. In Phase 1, the reactor treated simulated BW and achieved 77% CODtotal removal. In Phase 2, treating only sanitary wastewater, the CODtotal removal efficiency was 60%. Phase 3 treated simulated BW again, and CODtotal removal efficiency was somewhat higher than in Phase 1, reaching 81%. In Phase 3, the removal of pathogens was also evaluated: the efficiency was 1.96 log for Escherichia coli and 2.13 log for total coliforms. The UASB reactor was able to withstand large variations in the organic loading rate (0.09–1.49 kg COD m−3 d−1), in continuous operation mode, maintaining a stable organic matter removal.


2002 ◽  
Vol 45 (10) ◽  
pp. 243-248 ◽  
Author(s):  
L. Seghezzo ◽  
R.G. Guerra ◽  
S.M. González ◽  
A.P. Trupiano ◽  
M.E. Figueroa ◽  
...  

The performance of a sewage treatment system consisting of a settler followed by an Upflow Anaerobic Sludge Bed (UASB) reactor is described. Mean ambient and sewage temperature were 16.5 and 21.6°C, respectively. Total Chemical Oxygen Demand (CODt) concentration averaged 224.2 and 152.6 mg/L, for raw and settled sewage, respectively. The effluent concentration was 68.5 mgCODt/L. Total and suspended COD removal efficiencies of approximately 70 and 80%, respectively, have been observed in the system at a mean Hydraulic Retention Time (HRT) of 2 + 5 h. Maximum COD removal efficiency was achieved in the UASB reactor when upflow velocity (Vup) was 0.43 m/h (HRT = 6 h). Mean Specific Methanogenic Activity (SMA) and Volatile Suspended Solids (VSS) concentration in the granular sludge bed were 0.11 gCOD-CH4/gVSS.d and 30.0 gVSS/Lsludge, respectively. SMA was inversely related to VSS concentration, and both parameters varied along the sludge bed height. The Solids Retention Time (SRT) in the reactor was 450 days. Sludge characteristics have not been affected by changes of up to one month in Vup in the range 0.28–0.85 m/h (HRT 3–9 h). This system or two UASB reactors in series could be an alternative for sewage treatment under moderate temperature conditions.


2008 ◽  
Vol 57 (3) ◽  
pp. 361-366 ◽  
Author(s):  
Nidal Mahmoud ◽  
Grietje Zeeman ◽  
JulesB. van Lier

High rate anaerobic technologies offer cost-effective solutions for “sewage” treatment in the temperate climate of Palestine and Jordan. However, local sewage characteristics demand amendments to the conventional UASB reactor design. A solution is found in a parallel operating digester unit that stabilises incoming solids and enriches the UASB sludge bed with methanogenic activity. The digester operational conditions were assessed by operating eight CSTRs fed with primary sludge. The results showed a high degree of sludge stabilization in the parallel digesters at SRTs≥10 and 15 days at process temperatures of 35 and 25°C, respectively. The technical feasibility of the UASB-digester combination was demonstrated by continuous flow pilot-scale experiments. A pilot UASB reactor was operated for 81 days at 6 hours HRT and 15°C and was fed with raw domestic sewage. This period was subsequently followed by an 83 day operation period incorporating a parallel digester unit, which was operated at 35°C. The UASB-digester combination achieved removal efficiencies of total, suspended, colloidal and dissolved CODs of respectively 66, 87, 44 and 30%. Preliminary model calculations indicated that a total reactor volume of the UASB-digester system corresponding to 8.6 hours HRT might suffice for sewage treatment in Palestine.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 372 ◽  
Author(s):  
Rajinikanth Rajagopal ◽  
Mahbuboor Choudhury ◽  
Nawrin Anwar ◽  
Bernard Goyette ◽  
Md. Rahaman

The up-flow anaerobic sludge blanket (UASB) process has emerged as a promising high-rate anaerobic digestion technology for the treatment of low- to high-strength soluble and complex wastewaters. Sewage, a complex wastewater, contains 30–70% particulate chemical oxygen demand (CODP). These particulate organics degrade at a slower rate than the soluble organics found in sewage. Accumulation of non-degraded suspended solids can lead to a reduction of active biomass in the reactor and hence a deterioration in its performance in terms of acid accumulation and poor biogas production. Hydrolysis of the CODP in sewage prior to UASB reactor will ensure an increased organic loading rate and better UASB performance. While single-stage UASB reactors have been studied extensively, the two-phase full-scale treatment approach (i.e., a hydrolysis unit followed by an UASB reactor) has still not yet been commercialized worldwide. The concept of treating sewage containing particulate organics via a two-phase approach involves first hydrolyzing and acidifying the volatile suspended solids without losing carbon (as methane) in the first reactor and then treating the soluble sewage in the UASB reactor. This work reviews the available literature to outline critical findings related to the treatment of sewage with and without hydrolysis before the UASB reactor.


2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


2012 ◽  
Vol 2 (2) ◽  
pp. 59-67 ◽  
Author(s):  
P. C. Vieira ◽  
M. von Sperling

We aimed to evaluate the performance and cost savings of an innovative design of a trickling filter (TF) for small population sizes, developed at the Federal University of Minas Gerais, Brazil referred to as an open trickling filter (OTF). The OTF had no side walls and no perforated bottom slab, and was applied for the post-treatment of sanitary sewage from an upflow anaerobic sludge blanket (UASB) reactor. The OTF had crushed-stone packing (3.5 m high) and was operated with an average surface hydraulic loading rate of 4.1 m3 m−2 d−1 and an average volumetric organic loading rate of 0.10 kg BOD m−3 d−1 (biochemical oxygen demand). The average concentrations obtained at the OTF effluent were 48 mg TSS L−1 (total suspended solids), 132 mg COD L−1 (chemical oxygen demand), 51 mg BOD L−1, 19 mg TKN L−1 (total Kjeldahl nitrogen), 16 mg NH4+-N L−1 and 10 mg NO3−-N L−1, complying with local discharge standards. Analysis of the construction costs indicated savings of 74% compared to conventional TF. Based on the performance, compactness, simplicity and reduced capital costs, it is believed that the proposed OTF is a good alternative for small communities, especially in developing countries.


2008 ◽  
Vol 57 (7) ◽  
pp. 1047-1052 ◽  
Author(s):  
U. Durán ◽  
O. Monroy ◽  
J. Gómez ◽  
F. Ramírez

The biological elimination of polymeric resins compounds (PRC) such as acrylic acid and their esters, vinyl acetate and styrene under methanogenic and oxygen-limited methanogenesis conditions was evaluated. Two UASB reactors (A and B) were used and the removal of the organic matter was studied in four stages. Reactor A was used as methanogenic control during the study. Initially both reactors were operated under methanogenic conditions. From the second stage reactor B was fed with 0.6 and 1 mg/L·d of oxygen (O2). Reactor A had diminution in chemical oxygen demand (COD) removal efficiency from 75±4% to 37±5%, by the increase of PRC loading rate from 750 to 1125 mg COD/L·d. In this reactor there was no styrene elimination. In reactor B the COD removal efficiency was between 73±5% and 80±2%, even with the addition of O2 and increase of the PRC loading rate, owing to oxygen being used in the partial oxidation of these compounds. In this reactor the yields were modified from 0.56 to 0.40 for CH4 and from 0.31 to 0.60 for CO2. The O2 in low concentrations increased 40.7% the consumption rates of acrylic acid, methyl acrylate and vinyl acetate, allowing styrene consumption with a rate of 0.103 g/L·d. Batch cultures demonstrated that under methanogenic and oxygen-limited methanogenesis conditions, the glucose was not used as an electron acceptor in the elimination of PRC.


2012 ◽  
Vol 65 (10) ◽  
pp. 1887-1894 ◽  
Author(s):  
V. Singh ◽  
A. K. Mittal

This study reports applicability of upflow anaerobic sludge blanket (UASB) process to treat the leachate from a municipal landfill located in Delhi. A laboratory scale reactor was operated at an organic loading rate of 3.00 kg chemical oxygen demand (COD)/m3 d corresponding to a hydraulic retention time (HRT) of 12 h for over 8 months. The effect of toxicity of leachate, and feed composition on the treatability of leachate was evaluated. Average COD of the leachate, during the study period varied between 8,880 and 66,420 mg/l. Toxicity of the leachate used during a period of 8 months varied from LC50 1.22 to 12.35 for 96 h. The removal efficiency of soluble COD ranged between 91 and 67% for fresh leachate and decreased drastically from 90 to 35% for old leachate having high toxicity. The efficiency varied from 81 to 65%. The reactor performed more efficiently for the treatment of fresh leachate (less toxic, LC50 11.64, 12.35, and 12.15 for 96 h) as compared with old leachate (more toxic, LC50 1.22 for 96 h). Toxicity of the leachate affected its treatment potential by the UASB.


2010 ◽  
Vol 113-116 ◽  
pp. 1031-1035 ◽  
Author(s):  
Yi Sun ◽  
Zi Rui Guo ◽  
Xiao Ye Liu ◽  
Yong Feng Li

In order to disscuss the ability of H2-production and wastewater treatment, a up-flow anaerobic sludge bed (UASB) using a synthesize substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. In this paper, UASB reactor was seeded with sludge from the Harbin Wenchang Sewage treatment plant dewatered sludge. Successful start-up of the reactor was achieved within 40 days at 35±1°C.The concentration of chemical oxygen demand (COD) in influent is increased from 1100mg/L . When it reached maximum, the loading rate was adjusted in a small way and indicators such as VFA, pH and COD in effluent as well as gas production are observed. The most relevant parameters were calibrated with lab-scale experimental data. These experimental results clearly showed that, the most proper corresponding organic loading rate (OLR) and hydraulic retention time (HRT) were 6 kg/ (m3.d)(COD=6000mg/L)and 24 h respectively. Up to 85% of COD was removed and the CH4 production rate of 3.2 m3 / (m3 .d) was obtained. The produced biogas contained 72% of CH4. In the mean time, anaerobic sludge multiplies more faster and exiguous particles appeared. Granules with diameter 1-3mm.


2014 ◽  
Vol 69 (9) ◽  
pp. 1926-1931 ◽  
Author(s):  
F. Hassard ◽  
E. Cartmell ◽  
J. Biddle ◽  
T. Stephenson

The impact of organic loading rate (OLR) on carbonaceous materials and ammonia removal was assessed in bench scale rotating media biofilm reactors treating real wastewater. Media composition influences biofilm structure and therefore performance. Here, plastic mesh, reticulated coarse foam and fine foam media were operated concurrently at OLRs of 15, 35 and 60 g sCOD m−2d−1 in three bench scale shaft mounted advanced reactor technology (SMART) reactors. The sCOD removal rate increased with loading from 6 to 25 g sCOD m−2d−1 (P < 0.001). At 35 g BOD5m−2d−1, more than double the arbitrary OLR limit of normal nitrifying conditions (15 g BOD5m−2d−1); the removal efficiency of NH4-N was 82 ± 5, 27 ± 19 and 39 ± 8% for the mesh, coarse foam and fine foam media, respectively. Increasing the OLR to 35 gm−2d−1 decreased NH4-N removal efficiency to 38 ± 6, 21 ± 4 and 21 ± 6%, respectively. The mesh media achieved the highest stable NH4+-N removal rate of 6.5 ± 1.6 gm−2d−1 at a sCOD loading of 35 g sCOD m−2d−1. Viable bacterial numbers decreased with increasing OLR from 2 × 1010–4 × 109 cells per ml of biofilm from the low to high loading, suggesting an accumulation of inert non-viable biomass with higher OLR. Increasing the OLR in permeable media is of practical benefit for high rate carbonaceous materials and ammonia removal in the pretreatment of wastewater.


Sign in / Sign up

Export Citation Format

Share Document