polymeric resins
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 22)

H-INDEX

27
(FIVE YEARS 4)

DYNA ◽  
2021 ◽  
Vol 88 (217) ◽  
pp. 237-246
Author(s):  
Laylana C. Deus ◽  
Carla Michele Frota da Silva ◽  
Maximiliano F. Martins ◽  
Thiago M. Aversa ◽  
Elizabete Fernandes Lucas

This study describes the synthesis of polymeric resins based on styrene (STY), glycidyl methacrylate (GMA) and divinylbenzene (DVB), modified chemically through sulfonation reactions during different time intervals, to learn the influence of the materials’ structure on their adsorption capacity and evaluate their potential for application in the removal of ammonium from wastewater to levels compliant with the technical standard NT202, R-10 (INEA, 1986). The results showed that besides the duration of the sulfonation reaction, factors such as surface area and pore diameter also contributed significantly to the ammonium absorption process. The efficiency of the formulations was in decreasing order DVB(7:3)(2)S, DVB(7:3)(24)S, STY-DVB(7:3)(2)S and GMA-DVB(7:3)(2)S. Of these, DVB(7:3)(2)S had the greatest surface area but had low ion exchange capacity. The resin with the greatest exchange capacity was STY-DVB(7:3)(2)S, but it had efficiency about 20% lower than the former resin, showing a result very near that of GMA-DVB(7:3)(2)S.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3435
Author(s):  
Basel Al-Rudainy ◽  
Mats Galbe ◽  
Ola Wallberg

In this work, three polymeric resins were examined as alternatives for the separation of hemicellulose and lignin. The aim was to remove the lignin from spent-sulfite-liquor (SSL) prior to ultrafiltration, producing a hemicellulose-rich retentate with high purity, and increase the capacity of the membrane filtration. The lignin in the SSL was sulfonated; thus, two of the resins were anion exchangers and 1 was hydrophobic. The data from the equilibrium studies and adsorption kinetics were fitted to established models, and the results were interpreted based on these observations. The strongly basic anion exchanger performed best with regard to lignin removal. The adsorption followed the Sips isotherm, indicating that the process was cooperative with chemisorption as the main reaction between the adsorbate and adsorbent based on the kinetics. Regeneration of the adsorbent was also possible, wherein 100 g/L NaCl was sufficient to recover 98% of the lignin. The lignin removal had a positive effect on the ultrafiltration process, in which the flux increased by 38% and the extent of separation between the hemicellulose and lignin rose from 17% to 59%.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1620
Author(s):  
Zujin Yang ◽  
Guifang Wu ◽  
Qiuru Li ◽  
Hongxia Ai ◽  
Xingdong Yao ◽  
...  

In this paper, we adopted a simple and efficient strategy to prepare a β-cyclodextrin (β-CD)-modified hyper-crosslinked polymer (CDM-HCP). The structures and physicochemical properties of the as-synthesized polymer were also evaluated. It was applied to the removal of anilines from aqueous solutions. The introduction of β-CD into the hyper-crosslinked polymer significantly enhanced adsorption properties for the removal of various amines. The adsorption kinetics agreed with the pseudo-second-order mode very well. The adsorption isotherm data of p-methylaniline (p-MA) and p-aminobenzoic acid (p-ABC) were in agreement with the Langmuir isotherm, whereas aniline and p-chloroaniline (p-CA) were fitted best with the Freundlich model. The maximum adsorption capacities (qmax) determined by adsorption isotherms were 148.97 mg/g for aniline, 198.45 mg/g for p-MA, 293.71 mg/g for p-CA, and 622.91 mg/g for p-ABC, respectively. It had higher adsorption capacities than those of some commercial polymeric resins, such as XAD-4, PA66, and AB-8. The interaction mechanism was investigated by FTIR, XPS, and the ONIOM2 method. A CDM-HCP can be regenerated efficiently and used repeatedly, indicating its potential technological applications in removing organic pollutants from actual industrial effluents.


2020 ◽  
pp. 1-10
Author(s):  
Dipaloy Datta ◽  
Gaurav Gehlot ◽  
Gaurav Singh ◽  
Abhishek Bhardwaj ◽  
Dinesh Kumar

Sign in / Sign up

Export Citation Format

Share Document