scholarly journals Air dan Dampak Kelangkaannya bagi Perekonomian Masyarakat Urban: Studi Pustaka Pulau Jawa

2021 ◽  
Vol 6 (1) ◽  
pp. 38-48
Author(s):  
Ratna Indah Lestari ◽  
Rina Ramadhani ◽  
Sherawali Sherawali ◽  
Ana Toni Roby Candra Yudha

The purpose of this study is to determine and analyze the effect of water resources on the economy of urban communities in Java and to answer the issue of clean water scarcity in 2040. The results of this study indicate that the issue of water scarcity in Java in 2040 is caused by climate change. population growth, land-use change, and water pollution. The suggestion in accordance with this is that all stakeholders are expected to be aware of and continue to monitor the availability of clean water by providing education and socialization at various professional and educational levels in order to obtain more sustainable use of water.

2013 ◽  
Vol 16 (1) ◽  
pp. 77-84
Author(s):  
Slamet Budi Yuwono ◽  
Naik Sinukaban ◽  
Kukuh Murtilaksono ◽  
Bunasor Sanim

Way Betung watershed is one of the important water resources in Lampung Province and it provides a clean water for Bandar Lampung City through a regional water supply company (PDAM). By the increase of population and economical activities of Bandar Lampung City, the need of clean water also increase, however by the time, the conditions of Way Betung watershed as water resources are declining. Therefore, to improve or to restore WayBetung watershed, a high cost is needed. The research was aimed: (a) to study the effects of Way Betung watershed land use change on the water resources of Bandar Lampung City, (b) to arrange the sustainable development of Way Betung watershed in order to maintain the availability of water resources. The sustainable developments of water resources of Way Betung watershed were arranged in five alternatives/scenarios and each alternative was related toits erosion (USLE method) and its run off volume (SCS method). The results showed that land use changes of Way Betung watershed (1991-2006) were likely to increase daily maximum discharge (Q max), to decrease daily minimum discharge (Q min), to increase fluctuation of river discharge, and to increase yearly run off coeffcient. The best sustainable development of water resources of Way Betung watershed, Lampung Province, was alternative/scenario-4 (forest as 30% of watershed areas + alley cropping in the mix garden). This alternative will decrease erosion to the level lower than tolerable soil loss and also decrease fluctuation of monthly run off.Keywords: Land use change, run off coefficient, water resources, watershed


Author(s):  
Kim Loi Nguyen ◽  
Le Tan Dat Nguyen ◽  
Hoang Tu Le ◽  
Duy Liem Nguyen ◽  
Ngoc Quynh Tram Vo ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Yanhu He ◽  
Kairong Lin ◽  
Xiaohong Chen

Variability and availability of water resources under changing environment in a regional scale have been hot topics in recent years, due to the vulnerability of water resources associated with social and economic development. In this paper, four subbasins in the Dongjiang basin with a significant land use change were selected as case study. Runoffs of the four subbasins were simulated using the SCS monthly model to identify the quantitative impacts of land use and climate change. The results showed that (1), in the Dongjiang basin, temperature increased significantly, evaporation and sunlight decreased strongly, while precipitation showed a nonsignificant increase; (2) since the 1980s, land uses in the Dongjiang basin have experienced a significant change with a prominent increase in urban areas, a moderate increase in farmlands, and a great decrease in forest areas; (3) the SCS monthly model performed well in the four subbasins giving that the more significant land use change in each subbasin, the more runoff change correspondingly; (4) overall, runoff change was contributed half and half by climate change and human activities, respectively, in all the subbasins, in which about 20%~30% change was contributed by land use change.


2018 ◽  
Vol 22 (2) ◽  
pp. 1411-1435 ◽  
Author(s):  
Gina Tsarouchi ◽  
Wouter Buytaert

Abstract. Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000–2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000–2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030–2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of climate change and land-use change from a water demand perspective. We conclude that future water demands in the Upper Ganges region for winter months may not be met.


Author(s):  
Kashif Haleem ◽  
Afed Ullah Khan ◽  
Sohail Ahmad ◽  
Mansoor Khan ◽  
Fayaz Ahmad Khan ◽  
...  

Abstract Investigating the effects of climate and land-use changes on surface runoff is critical for water resources management. The majority of studies focused on projected climate change effects on surface runoff, while neglecting future land-use change. Therefore, the main aim of this article is to discriminate the impacts of projected climate and land-use changes on surface runoff using the Soil and Water Assessment Tool (SWAT) through the lens of the Upper Indus Basin, Pakistan. Future scenarios of the land-use and climate changes are predicted using cellular automata artificial neural network and four bias-corrected general circulation models, respectively. The historical record (2000–2013) was divided into the calibration period (2000–2008) and the validation period (2009–2013). The simulated results demonstrated that the SWAT model performed well. The results obtained from 2000 to 2013 show that climate change (61.61%) has a higher influence on river runoff than land-use change (38.39%). Both climate and land-use changes are predicted to increase future runoff depth in this basin. The influence of climate change (12.76–25.92%) is greater than land-use change (0.37–1.1%). Global weather data has good applicability for simulating hydrological responses in the region where conventional gauges are unavailable. The study discusses that both climate and land-use changes impact runoff depth and concluded some suggestions for water resources managers to bring water environment sustainability.


Sign in / Sign up

Export Citation Format

Share Document