scholarly journals Hydrological impacts of climate and land-use change on flow regime variations in upper Indus basin

Author(s):  
Kashif Haleem ◽  
Afed Ullah Khan ◽  
Sohail Ahmad ◽  
Mansoor Khan ◽  
Fayaz Ahmad Khan ◽  
...  

Abstract Investigating the effects of climate and land-use changes on surface runoff is critical for water resources management. The majority of studies focused on projected climate change effects on surface runoff, while neglecting future land-use change. Therefore, the main aim of this article is to discriminate the impacts of projected climate and land-use changes on surface runoff using the Soil and Water Assessment Tool (SWAT) through the lens of the Upper Indus Basin, Pakistan. Future scenarios of the land-use and climate changes are predicted using cellular automata artificial neural network and four bias-corrected general circulation models, respectively. The historical record (2000–2013) was divided into the calibration period (2000–2008) and the validation period (2009–2013). The simulated results demonstrated that the SWAT model performed well. The results obtained from 2000 to 2013 show that climate change (61.61%) has a higher influence on river runoff than land-use change (38.39%). Both climate and land-use changes are predicted to increase future runoff depth in this basin. The influence of climate change (12.76–25.92%) is greater than land-use change (0.37–1.1%). Global weather data has good applicability for simulating hydrological responses in the region where conventional gauges are unavailable. The study discusses that both climate and land-use changes impact runoff depth and concluded some suggestions for water resources managers to bring water environment sustainability.

2019 ◽  
Vol 11 (24) ◽  
pp. 7221 ◽  
Author(s):  
Dao Nguyen Khoi ◽  
Van Nguyen ◽  
Truong Thao Sam ◽  
Pham Nhi

The effects of climate and land-use changes have put intense pressures on water resources with regard to water quantity and quality in the La Buong River Basin, located in Southern Vietnam. Therefore, an estimate of such effects and their consequences on water resources in this area is needed. The aim of this study is to evaluate the segregated and aggregated effects of climate change and land-use change on streamflow and water quality components (sediment and nutrient loads) using the well-known Soils and Water Assessment Tool (SWAT). The SWAT model was carefully calibrated and validated against the observation data before it can be used as a simulation tool to study the impacts of climate and land-use changes on hydrological processes. As a result of this study, it shows a reduction in the wet-season and annual streamflow, and sediment and nutrient loads will be occurred in the study area due to climate change effects, while the streamflow, and sediment and nutrient loads will be increased under the effects of the land-use change. Moreover, the streamflow and water quality components are more sensitive to land-use change than climate change. The results obtained from this study can provide a basic knowledge of the effects of climate and land-use changes on the streamflow and water quality to the local and national authorities for the future development of integrated water resources management in the La Buong River Basin.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1790 ◽  
Author(s):  
Muhammad Afzal ◽  
Ragab Ragab

Although the climate change projections are produced by global models, studying the impact of climatic change on water resources is commonly investigated at catchment scale where the measurements are taken, and water management decisions are made. For this study, the Frome catchment in the UK was investigated as an example of midland England. The DiCaSM model was applied using the UKCP09 future climate change scenarios. The climate projections indicate that the greatest decrease in groundwater recharge and streamflow was projected under high emission scenarios in the 2080s. Under the medium and high emission scenarios, model results revealed that the frequency and severity of drought events would be the highest. The drought indices, the Reconnaissance Drought Index, RDI, Soil Moisture Deficit, SMD and Wetness Index, WI, predicted an increase in the severity of future drought events under the high emission scenarios. Increasing broadleaf forest area would decrease streamflow and groundwater recharge. Urban expansion could increase surface runoff. Decreasing winter barley and grass and increasing oil seed rape, would increase SMD and slightly decrease river flow. Findings of this study are helpful in the planning and management of the water resources considering the impact of climate and land use changes on variability in the availability of surface and groundwater resources.


2020 ◽  
Vol 7 (8) ◽  
pp. 191957 ◽  
Author(s):  
Muhammad Izhar Shah ◽  
Asif Khan ◽  
Tahir Ali Akbar ◽  
Quazi K. Hassan ◽  
Asim Jahangir Khan ◽  
...  

The Upper Indus Basin (UIB) is a major source of supplying water to different areas because of snow and glaciers melt and is also enduring the regional impacts of global climate change. The expected changes in temperature, precipitation and snowmelt could be reasons for further escalation of the problem. Therefore, estimation of hydrological processes is critical for UIB. The objectives of this paper were to estimate the impacts of climate change on water resources and future projection for surface water under different climatic scenarios using soil and water assessment tool (SWAT). The methodology includes: (i) development of SWAT model using land cover, soil and meteorological data; (ii) calibration of the model using daily flow data from 1978 to 1993; (iii) model validation for the time 1994–2003; (iv) bias correction of regional climate model (RCM), and (v) utilization of bias-corrected RCM for future assessment under representative concentration pathways RCP4.5 and RCP8.5 for mid (2041–2070) and late century (2071–2100). The results of the study revealed a strong correlation between simulated and observed flow with R 2 and Nash–Sutcliff efficiency (NSE) equal to 0.85 each for daily flow. For validation, R 2 and NSE were found to be 0.84 and 0.80, respectively. Compared to baseline period (1976–2005), the result of RCM showed an increase in temperature ranging from 2.36°C to 3.50°C and 2.92°C to 5.23°C for RCP4.5 and RCP8.5 respectively, till the end of the twenty-first century. Likewise, the increase in annual average precipitation is 2.4% to 2.5% and 6.0% to 4.6% (mid to late century) under RCP4.5 and RCP8.5, respectively. The model simulation results for RCP4.5 showed increase in flow by 19.24% and 16.78% for mid and late century, respectively. For RCP8.5, the increase in flow is 20.13% and 15.86% during mid and late century, respectively. The model was more sensitive towards available moisture and snowmelt parameters. Thus, SWAT model could be used as effective tool for climate change valuation and for sustainable management of water resources in future.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1801 ◽  
Author(s):  
Wakjira Takala Dibaba ◽  
Tamene Adugna Demissie ◽  
Konrad Miegel

Land use/land cover (LULC) and climate change affect the availability of water resources by altering the magnitude of surface runoff, aquifer recharge, and river flows. The evaluation helps to identify the level of water resources exposure to the changes that could help to plan for potential adaptive capacity. In this research, Cellular Automata (CA)-Markov in IDRISI software was used to predict the future LULC scenarios and the ensemble mean of four regional climate models (RCMs) in the coordinated regional climate downscaling experiment (CORDEX)-Africa was used for the future climate scenarios. Distribution mapping was used to bias correct the RCMs outputs, with respect to the observed precipitation and temperature. Then, the Soil and Water Assessment Tool (SWAT) model was used to evaluate the watershed hydrological responses of the catchment under separate, and combined, LULC and climate change. The result shows the ensemble mean of the four RCMs reported precipitation decline and increase in future temperature under both representative concentration pathways (RCP4.5 and RCP8.5). The increases in both maximum and minimum temperatures are higher for higher emission scenarios showing that RCP8.5 projection is warmer than RCP4.5. The changes in LULC brings an increase in surface runoff and water yield and a decline in groundwater, while the projected climate change shows a decrease in surface runoff, groundwater and water yield. The combined study of LULC and climate change shows that the effect of the combined scenario is similar to that of climate change only scenario. The overall decline of annual flow is due to the decline in the seasonal flows under combined scenarios. This could bring the reduced availability of water for crop production, which will be a chronic issue of subsistence agriculture. The possibility of surface water and groundwater reduction could also affect the availability of water resources in the catchment and further aggravate water stress in the downstream. The highly rising demands of water, owing to socio-economic progress, population growth and high demand for irrigation water downstream, in addition to the variability temperature and evaporation demands, amplify prolonged water scarcity. Consequently, strong land-use planning and climate-resilient water management policies will be indispensable to manage the risks.


2011 ◽  
Vol 02 (01) ◽  
pp. 27-51 ◽  
Author(s):  
DAVID HAIM ◽  
RALPH J. ALIG ◽  
ANDREW J. PLANTINGA ◽  
BRENT SOHNGEN

An econometric land-use model is used to project regional and national land-use changes in the United States under two IPCC emissions scenarios. The key driver of land-use change in the model is county-level measures of net returns to five major land uses. The net returns are modified for the IPCC scenarios according to assumed trends in population and income and projections from integrated assessment models of agricultural prices and agricultural and forestry yields. For both scenarios, we project large increases in urban land by the middle of the century, while the largest declines are in cropland area. Significant differences among regions in the projected patterns of land-use change are evident, including an expansion of forests in the Mountain and Plains regions with declines elsewhere. Comparisons to projections with no climate change effects on prices and yields reveal relatively small differences. Thus, our findings suggest that future land-use patterns in the U.S. will be shaped largely by urbanization, with climate change having a relatively small influence.


2021 ◽  
Author(s):  
Xu Chen ◽  
Ruiguang Han ◽  
Yongjie Wang

Abstract Drought can be impacted by both climate change and land use change in different ways. Thus, in order to predict future drought conditions, hydrological simulations as an ideal means, can be used to account for both projected climate change and projected land use change. In this study, projected climate and land use changes were integrated with the SWAT (Soil and Water Assessment Tool) model to estimate the combined impact of climate and land use projections on hydrological droughts in the Luanhe River basin. We presented that the measured runoff and the remote sensing inversion of soil water content were simultaneously used to validate the model to ensure the reliability of model parameters. Following the calibration and validation, the SWAT model was forced with downscaled precipitation and temperature outputs from a suite of nine Global Climate Models (GCMs) based on the CMIP5, corresponding to three different representative concentration pathways (RCP 2.6, RCP 4.5 and 8.5) for three distinct time periods: 2011–2040, 2041–2070 and 2071–2100, referred to as early-century, mid-century and late-century, respectively, and the land use predicted by CA-Markov model in the same future periods. Hydrological droughts were quantified using the Standardized Runoff Index (SRI). Compared to the baseline scenario (1961–1990), mild drought occurred more frequently during the next three periods (except the 2080s under the RCP2.6 emission scenario). Under the RCP8.5 emission scenario, the probability of severe drought or above occurring in the 2080s increased, the duration prolonged and the severity increased. Under the RCP2.6 scenario, the upper central region of the Luanhe river in the 2020s and upper reaches of the Luanhe river in the 2080s, were more likely to suffer extreme drought events. And under the RCP8.5 scenario, the middle and lower Luanhe river in the 2080s, were more likely to suffer these conditions.


Author(s):  
Jamal H. Ougahi ◽  
Mark E. J. Cutler ◽  
Simon J. Cook

Abstract Climate change has implications for water resources by increasing temperature, shifting precipitation patterns and altering the timing of snowfall and glacier melt, leading to shifts in the seasonality of river flows. Here, the Soil & Water Assessment Tool was run using downscaled precipitation and temperature projections from five global climate models (GCMs) and their multi-model mean to estimate the potential impact of climate change on water balance components in sub-basins of the Upper Indus Basin (UIB) under two emission (RCP4.5 and RCP8.5) and future (2020–2050 and 2070–2100) scenarios. Warming of above 6 °C relative to baseline (1974–2004) is projected for the UIB by the end of the century (2070–2100), but the spread of annual precipitation projections among GCMs is large (+16 to −28%), and even larger for seasonal precipitation (+91 to −48%). Compared to the baseline, an increase in summer precipitation (RCP8.5: +36.7%) and a decrease in winter precipitation were projected (RCP8.5: −16.9%), with an increase in average annual water yield from the nival–glacial regime and river flow peaking 1 month earlier. We conclude that predicted warming during winter and spring could substantially affect the seasonal river flows, with important implications for water supplies.


Sign in / Sign up

Export Citation Format

Share Document