scholarly journals Formation of branched structure of polyimide macromolecules in the temperatures range below the onset of the thermal destruction

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Valentin Svetlichnyi ◽  
Iosif Gofman ◽  
Andrey Didenko ◽  
Elena Vlasova
2020 ◽  
pp. 34-39
Author(s):  
Aneta Antczak-Chrobot ◽  
Maciej Wojtczak

In this research paper, development of a procedure of isolation of exopolysaccharides from frost-damaged beet and an analysis of structural and chemical composition of polymers isolated from sugar beet of different origin are presented. Total acid hydrolysis degradation integrated with HPAEC-ED analysis has been utilized to confirm the monomeric composition of the separated polysaccharides. The implementation of NMR spectral analysis and SEC chromatography of the structure of exopolysaccharides has been investigated. The results demonstrate that the chemical composition and structure of exopolysaccharides depend on their origin. Typical exopolysaccharides from Central European beet roots consist mainly of glucose monomers – and they have low branched structure – about 90% of α-1,6 linkage which is typical for dextran. The exopolysaccharides isolated from Swedish beet are characterized by 50–60% fructose monomers. They contain only about 65% α-1,6 linkages. Exopolysaccharides extracted from various origin beet differ in average molecular mass. The molecular distribution is not normal.


2020 ◽  
Vol 57 (3) ◽  
pp. 249-259
Author(s):  
Baifen Liu ◽  
Mohammad Mirjalili ◽  
Peiman Valipour ◽  
Sajad Porzal ◽  
shirin Nourbakhsh

This research deals with the mechanical properties, microstructure, and interrelations of triple nanocomposite based on PET/EPDM/Nanoclay. These properties were examined in different percentages of PET/EPDM blend with compatibilizer (Styrene-Ethylene/Butylene-Styrene)-G-(Maleic anhydrate) (SEBS-g-MAH). Results showed that the addition of 15% SEBS-g-MAH improved the toughness and impact strength of this nanocomposite. SEM micrographs indicated the most stable fuzzy microstructure in a 50/50 mixture of scattered phases of EPDM/SEBS-g-MAH. The effects of percentages of 1, 3, 5, 7 nanoclay Cloisite 30B (C30B) on the improvement of the properties were evaluated. With the addition of nano clay, the toughness and impact strength was reduced. Thermal destruction of nanoclay in processing temperature led to the decreasing dispersion of clay plates in the matrix and a reduction in the distances of nano clay plates in the composite compared to pure nano clay. XRD and TEM analysis was used to demonstrate the results. By adding 1% of nanoclay to the optimal sample, maximum stiffness, and Impact strength, among other nanocomposites, was achieved.


2018 ◽  
Vol 951 ◽  
pp. 012007 ◽  
Author(s):  
A A Lebedev ◽  
V Y Davydov ◽  
D Y Usachov ◽  
S P Lebedev ◽  
A N Smirnov ◽  
...  

Author(s):  
A. Zimmermann ◽  
C. Visscher ◽  
M. Kaltschmitt

AbstractFructans are carbohydrates consisting of fructose monomers linked by β-2,1- and/or β-2,6-glycosidic bonds with linear or branched structure. These carbohydrates belong to the group of prebiotic dietary fibre with health-promoting potential for humans and mammals due to their indigestibility and selective stimulation of microorganisms in the gastrointestinal tract. This makes fructans interesting mainly for healthy food as well as animal feed applications. As a consequence of a growing public awareness for animal welfare, dietary fibre and thus fructans move into the focus as a fibre-rich feeding improving not only animals’ health but also their well-being. Against this background, this paper summarises the known effects of fructans focusing on pigs and highlights the state of the art in fructan production processes from plant material as well as selected current research lines. Additionally, an attempt is made to assess the potential of European fructan production for an application as animal feed. Based on this, challenges in the field of fructan production are addressed and alternative substrates for fructans are discussed and pointed out.


Author(s):  
Hongxing Yang ◽  
Guanben Du ◽  
Zhi Li ◽  
Xin Ran ◽  
Xiaojian Zhou ◽  
...  
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1127
Author(s):  
Yuejie Jin ◽  
Dingrong Liu ◽  
Jinhua Hu

Polyglycerol polyricinolate (PGPR) and polyglycerol-2 dioleate were selected as model surfactants to construct water-in-oil (W/O) emulsions, and the effect of interfacial rheological properties of surfactant film on the stability of emulsions were investigated based on the interfacial dilatational rheological method. The hydrophobicity chain of PGPR is polyricinic acid condensed from ricinic acid, and that of polyglycerol-2 dioleate is oleic acid. Their dynamic interfacial tensions in 15 cycles of interfacial compression-expansion were determined. The interfacial dilatational viscoelasticity was analyzed by amplitude scanning in the range of 1–28% amplitude and frequency sweep in the range of 5–45 mHz under 2% amplitude. It was found that PGPR could quickly reach adsorption equilibrium and form interfacial film with higher interfacial dilatational viscoelastic modulus to resist the deformation of interfacial film caused by emulsion coalescence, due to its branched chain structure and longer hydrophobic chain, and the emulsion thus presented good stability. However, polyglycerol-2 dioleate with a straight chain structure had lower interfacial tension, and it failed to resist the interfacial disturbance caused by coalescence because of its lower interfacial dilatational viscoelastic modulus, and thus the emulsion was unstable. This study reveals profound understanding of the influence of branched structure of PGPR hydrophobic chain on the interfacial film properties and the emulsion stability, providing experimental reference and theoretical guidance for future design or improvement of surfactant.


2015 ◽  
Vol 7 (23) ◽  
pp. 10032-10039 ◽  
Author(s):  
Taotao Feng ◽  
Xiuwen Qiao ◽  
Haining Wang ◽  
Zhao Sun ◽  
Chenglin Hong

A novel electrochemical immunosensor for the detection of CEA was proposed based on Fc-COOH connected to the branched structure of a MWCNT–CS complex modified electrode.


1996 ◽  
Vol 118 (4) ◽  
pp. 269-276 ◽  
Author(s):  
A. K. Gupta ◽  
E. Ilanchezhian ◽  
E. L. Keating

Experimental and theoretical studies are presented from a laboratory-scale thermal destruction facility on the destruction behavior of surrogate plastic and nonplastic solid wastes. The nonplastic waste was cellulosic, while the plastic waste contained compounds, such as polyethylene, polyvinyl chloride, polystyrene, polypropylene, nylon, rubber, and polyurethane, or any of their desired mixtures. A series of combustion tests was performed with samples containing varying composition test was performed with samples containing varying composition of plastic and nonplastic. Experimental results are presented on combustion parameters (CO, excess air, residence time) and toxic emissions (dioxin, furan, metals). Equilibrium thermochemical calculations are presented on the thermal destruction behavior of samples under conditions of pyrolysis, combustion, and pyrolysis followed by combustion. Special interest is on the effect of waste properties and input operational parameters on chemistry and product composition. STANJAN and SOLGASMIX computer codes were used in the chemical equilibrium study. Analysis and interpretation of the data reveal the effect of waste feed composition on combustion parameters and dioxin, furan, and metals emission. Equilibrium calculation results are used to describe the experimentally observed trends for the thermal destruction behavior of these wastes. The results show significant influence of plastic on combustion characteristics, and dioxin, furan, and metals emission.


1949 ◽  
Vol 27 (5) ◽  
pp. 517-522 ◽  
Author(s):  
KTH Farrer ◽  
Miss PG Morrison

2013 ◽  
Vol 44 (6) ◽  
pp. 377-380 ◽  
Author(s):  
I. A. Kapustin ◽  
I. Yu. Filatov ◽  
Yu. N. Filatov

Sign in / Sign up

Export Citation Format

Share Document