Detection of signals with the orthogonal basis of the Gauss–Hermite functions

2018 ◽  
Vol 1 (1) ◽  
pp. 48-61
Author(s):  
D. A. Balakin ◽  
◽  
S. S. Churkin ◽  
V. V. Shtykov ◽  
◽  
...  
Author(s):  
A. El Gourari ◽  
A. Ghanmi ◽  
K. Zine

We consider the [Formula: see text]d and [Formula: see text]d bicomplex analogues of the classical Fourier–Wigner transform. Their basic properties, including Moyal’s identity and characterization of their ranges giving rise to new bicomplex–polyanalytic functional spaces are discussed. Details concerning a special window function are developed explicitly. An orthogonal basis for the space of bicomplex-valued square integrable functions on the bicomplex numbers is constructed by means of a specific class of bicomplex Hermite functions.


Author(s):  
G.D. Danilatos

The possibility of placing the specimen in a gaseous medium in the environmental SEM (ESEM) has created novel ways for detection of signals from the beam-specimen interactions. It was originally reported by Oanilatos that the ionization produced by certain signals inside the conditioning medium can be used to produce images. The aim of this report is to demonstrate some of the improvements on the system that have occurred thereafter.Two straight thin wires are aligned horizontally along a direction normal to the direction of the two scintillator backscattered electron (BSE) detectors reported elsewhere. The free end tips of the wires are about 5 mm apart halfway between the specimen and the pressure limiting aperture (specimen distance = 1.5 mm). The other end of each wire makes contact with the input of a separate preamplifier, two of which are built inside a shielding aluminum stub. With such a design, interference noise from the input cables is avoided.


Author(s):  
V.F. Kravchenko ◽  
◽  
O.V. Kravchenko ◽  
V.I. Lutsenko ◽  
I.V. Lutsenko ◽  
...  

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Valery E. Lyubovitskij ◽  
Fabian Wunder ◽  
Alexey S. Zhevlakov

Abstract We discuss new ideas for consideration of loop diagrams and angular integrals in D-dimensions in QCD. In case of loop diagrams, we propose the covariant formalism of expansion of tensorial loop integrals into the orthogonal basis of linear combinations of external momenta. It gives a very simple representation for the final results and is more convenient for calculations on computer algebra systems. In case of angular integrals we demonstrate how to simplify the integration of differential cross sections over polar angles. Also we derive the recursion relations, which allow to reduce all occurring angular integrals to a short set of basic scalar integrals. All order ε-expansion is given for all angular integrals with up to two denominators based on the expansion of the basic integrals and using recursion relations. A geometric picture for partial fractioning is developed which provides a new rotational invariant algorithm to reduce the number of denominators.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Zhong ◽  
Feihu Xu ◽  
Hoi-Kwong Lo ◽  
Li Qian

AbstractQuantum communication complexity explores the minimum amount of communication required to achieve certain tasks using quantum states. One representative example is quantum fingerprinting, in which the minimum amount of communication could be exponentially smaller than the classical fingerprinting. Here, we propose a quantum fingerprinting protocol where coherent states and channel multiplexing are used, with simultaneous detection of signals carried by multiple channels. Compared with an existing coherent quantum fingerprinting protocol, our protocol could consistently reduce communication time and the amount of communication by orders of magnitude by increasing the number of channels. Our proposed protocol can even beat the classical limit without using superconducting-nanowire single photon detectors. We also report a proof-of-concept experimental demonstration with six wavelength channels to validate the advantage of our protocol in the amount of communication. The experimental results clearly prove that our protocol not only surpasses the best-known classical protocol, but also remarkably outperforms the existing coherent quantum fingerprinting protocol.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


Sign in / Sign up

Export Citation Format

Share Document