scholarly journals Effects of Grazing Intensity on the Regeneration of Woody Species in an Oak Woodland

2017 ◽  
Vol 45 (2) ◽  
pp. 597-601 ◽  
Author(s):  
Aimilia LEMPESI ◽  
Alexia ELEFTHERIADOU ◽  
Zacharoula DELIVASI ◽  
Aikaterini PSYLLIDOU ◽  
Georgios KORAKIS ◽  
...  

In the Mediterranean regions, oak forests are commonly used for livestock grazing. However, it is well documented that livestock grazing is an essential factor that can affect the success of natural regeneration of oak and other woody species of the understorey. Consequently, it influences the composition and structure of oak woodlands. The main objective of the present study was to examine the effects of grazing intensity on characteristics of oak seedlings establishment (density, height, number of leaves) and on the diversity of the woody species seedlings. The research was conducted in open canopy Quercus frainetto woodland, grazed by a herd of 500 goats for eight months per year, located in Evros region, north-eastern Greece. The distance from a goat corral was used to represent relative grazing intensity. In May 2016, vegetation measurements were made along transects placed at 50, 150, 300, 600 and 1200 m from the goat corral, running perpendicular to four replicates. According to the results, increased grazing intensity significantly reduced the density, the plant height and the number of leaves of Quercus frainetto seedlings. Grazing intensity did not affect significantly diversity, evenness and dominance indices for the woody species seedlings. However, heavy grazing reduced species richness and the Chao1 index.

2021 ◽  
Vol 13 (15) ◽  
pp. 8392
Author(s):  
Zahra Karimipoor ◽  
Anahita Rashtian ◽  
Masoume Amirkhani ◽  
Somayeh Ghasemi

Livestock grazing can affect the cycling of nutritional elements in soil by making changes to the vegetation coverage. This study aimed to investigate the effect of rangeland exploitation on vegetation coverage and nitrogen kinetics. To this end, three experimental sites of light, moderate, and heavy grazing in Nodoushan rangelands of Yazd province were selected. The vegetation properties were then measured through systematic random sampling method and three to five bases along the transect were sampled from the current year growth of the dominant plants in the region. The soil samples were collected from 0–15 cm depth in five replications and mixed together to obtain a single composite soil sample on each site. In the first stage, nitrogen (N), carbon (C), C/N, cellulose, hemicellulose, and lignin of the sampled plant as well as nitrogen, carbon, lime, soil texture, saturation moisture percentage, pH, and electrical conductivity (EC) of the soil were measured. As the soil properties did not differ for light and moderate grazing soils, different treatments were conducted on the dominant species of light and heavy grazing sites with 1% organic carbon added to the rangeland soil. Nitrogen mineralization treatments were selected based on vegetation changes that, with increasing livestock grazing intensity, changed the predominance of plant composition from Artemisia sieberi and steppe to percentage Artemisia sieberi and Peganum harmala. The treatments included control, 100% Artemisia sieberi, 75% Artemisia sieberi and 25% Peganum harmala, 50% Artemisia sieberi and 50% Peganum harmala, 25% Artemisia sieberi and 75% Peganum harmala, and 100% Peganum harmala. The soil samples were incubated for pure nitrogen mineralization in three replications of 3 months. The results of nitrogen mineralization revealed that the immobilization of the treated soil with higher Artemisia sieberi and lower Peganum harmala was done at a more rapid rate during the first week. The immobilization was slowly reduced by the third week and then followed a growing rate. Overall, the results show that an increase in grazing intensity was associated with a change in vegetation coverage toward Peganum harmala species, the biochemical characteristics of which elevated the levels of pure nitrogen mineralization in soil.


2021 ◽  
Vol 22 (1) ◽  
pp. 17-30
Author(s):  
Nataliya Dimitrova ◽  
Lilyana Nacheva ◽  
Małgorzata Berova ◽  
Danuta Kulpa

In vitro micropropagation of plants is highly useful for obtaining large quantities of planting material with valuable economic qualities. However, plantlets grow in vitro in a specific environment and the adaptation after the transfer to ex vitro conditions is difficult. Therefore, the acclimatization is a key step, which mostly determines the success of micropropagation. The aim of this investigation was to study the effect of the biofertlizer Lumbrical on ex vitro acclimatization of micropropagated pear rootstock OHF 333 (Pyrus communis L.). Micropropagated and rooted plantlets were potted in peat and perlite (2:1) mixture with or without Lumbrical. They were grown in a growth chamber at a temperature of 22±2 °C and photoperiod of 16/8 hours supplied by cool-white fluorescent lamps (150 µmol m-2 s-1 Photosynthetic Photon Flux Density, PPFD). The plants were covered with transparent foil to maintain the high humidity, and ten days later, the humidity was gradually decreased. Biometric parameters, anatomic-morphological analyses, net photosynthetic rate and chlorophyll a fluorescence (JIP test) were measured 21 days after transplanting the plants to ex vitro conditions. The obtained results showed that the plants, acclimatized ex vitro in the substrate with Lumbrical, presented better growth (stem length, number of leaves, leaf area and fresh mass) and photosynthetic characteristics as compared to the control plants. This biostimulator could also be used to improve acclimatization in other woody species


Author(s):  
Samson Shimelse Jemaneh

This study was conducted with the objectives of study investigates, compare, and try to describe the floristic composition and structure of the vegetation of exclosures and open grazing lands. A stratified preferential sampling design technique with flexible systematic model was used for data collection. Data on vegetation and environmental parameters were gathered from 120 quadrants (90 from restorations or exclosures of different ages and 30 from adjacent open grazing lands), of 20 m x 20 m (400 m2) size. Species richness and the presence or absence of herbaceous plants were recorded like soil samples in a 2 m x 2 m (4 m2) subplot inside each main quadrant from five points, one at each corner and one at the center.  A total of 142 plant species belonging to 118 genera and 52 families were identified. All exclosures displayed higher plant species richness, diversity, and aboveground standing biomass compared to the adjacent open grazing lands. Consideration of edaphic (e.g. soil total nitrogen, available phosphorus, CEC, exchangeable bases, soil pH and soil texture) and site (e.g. Stoniness, Grazing) variables will help to optimize the selection of areas for the establishment of future exclosures. Moreover, our study suggests that with time exclosures may increasingly obtain an important role as refugees and species pool similar to church forests and should be protected and managed in a sustainable manner. However, economic and social impacts of exclosures should be included in feasibility studies before establishing exclosures in the future.  Altitude, Grazing and some soil parameters like Mg were the major environmental factors in the division of the vegetation into plant community types. The result of the frequency distribution of woody species showed a high proportion of small-sized individuals in the lower diameter classes indicating good recruitment potential of the forest patches and the rare occurrence of large individuals. Such trend was probably caused by past disturbance of the original vegetation resulting in a succession of secondary vegetation. In addition, the analysis of species population structure indicated that some tree species had abnormal population structure with no or few individuals at lower size classes. Moreover, assessment of regeneration status on the basis of age classes indicated that significant proportion of woody species were represented by few or no seedlings, entailing that they were under threat. Substantial numbers of forest species were found to have irregular population structure and are in reduced regeneration status. To prevent local extinction of these species, present efforts of nursery establishment and plantation of indigenous species in the exclosures should be strengthened and extended.


Author(s):  
Jinsheng Li ◽  
Jianying Shang ◽  
Ding Huang ◽  
Shiming Tang ◽  
Tianci Zhao ◽  
...  

The distribution of soil particle sizes is closely related to soil health condition. In this study, grasslands under different grazing intensities and different cultivation ages grasslands were selected to evaluate the dynamics of soil particle size redistribution in different soil layers. When the grazing intensity increased, the percentage of 2000~150-μm soil particles in the 0–10-cm soil layer decreased; 150~53-μm soil particles remained relatively stable among the grazing intensities—approximately 28.52%~35.39%. However, the percentage of less than 53-μm soil particles increased. In cultivated grasslands, the larger sizes (>53 μm) of soil particles increased and the smaller sizes (<53 μm) decreased significantly (p < 0.05) in the 0–10 cm-soil layer with increasing cultivation ages. The increase in small soil particles (<53 μm) in topsoil associated with grazing intensity increased the potential risk of further degradation by wind erosion. The increase in big soil particles (>53 μm) in topsoil associated with cultivation ages decreased the soil capacity of holding water and nutrient. Therefore, to maintain the sustainability of grassland uses, grazing grasslands need to avoid heavy grazing, and cultivated grasslands need to change current cultivation practices.


2013 ◽  
Vol 49 ◽  
pp. 12-16 ◽  
Author(s):  
Nacho Villar ◽  
Xavier Lambin ◽  
Darren Evans ◽  
Robin Pakeman ◽  
Steve Redpath

2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Johannes Kamp ◽  
Martin Freitag ◽  
Norbert Hölzel

Abstract We here respond to Nunez et al. (Reg Environ Chang 20:39, 2020), recently published in Regional Environmental Change. Nunez et al. project biodiversity responses to land-use and climate change in Central Asia. Their projections are based on scenarios of changing socio-economic and environmental conditions for the years 2040, 2070, and 2100. We suggest that the predicted magnitude of biodiversity loss might be biased high, due to four shortfalls in the data used and the methods employed. These are (i) the use of an inadequate measure of “biodiversity intactness,” (ii) a failure to acknowledge for large spatial variation in land-use trends across the five considered Central Asian countries, (iii) the assumption of a strictly linear, negative relationship between livestock grazing intensity and the abundance of animals and plants, and (iv) the extrapolation of grazing-related biodiversity responses into areas of cropland. We conclude that future scenarios of biodiversity response to regional environmental change in Central Asia will benefit from using regional, not global, spatial data on livestock distribution and land-use patterns. The use of extra-regional data on the relationships between biodiversity and land-use or climate should be avoided.


Land ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 122 ◽  
Author(s):  
Meyer ◽  
Holloway ◽  
Christiansen ◽  
Miller ◽  
D’Odorico ◽  
...  

Savannas are extremely important socio-economic landscapes, with pastoralist societies relying on these ecosystems to sustain their livelihoods and economy. Globally, there is an increase of woody vegetation in these ecosystems, degrading the potential of these multi-functional landscapes to sustain societies and wildlife. Several mechanisms have been invoked to explain the processes responsible for woody vegetation composition; however, these are often investigated separately at scales not best suited to land-managers, thereby impeding the evaluation of their relative importance. We ran six transects at 15 sites along the Kalahari transect, collecting data on species identity, diversity, and abundance. We used Poisson and Tobit regression models to investigate the relationship among woody vegetation, precipitation, grazing, borehole density, and fire. We identified 44 species across 78 transects, with the highest species richness and abundance occurring at Kuke (middle of the rainfall gradient). Precipitation was the most important environmental variable across all species and various morphological groups, while increased borehole density and livestock resulted in lower bipinnate species abundance, contradicting the consensus that these managed features increase the presence of such species. Rotating cattle between boreholes subsequently reduces the impact of trampling and grazing on the soil and maintains and/or reduces woody vegetation abundance.


2013 ◽  
Vol 41 (2) ◽  
pp. 567 ◽  
Author(s):  
Aimilia LEMPESI ◽  
Apostolos P. KYRIAZOPOULOS ◽  
Michail ORFANOUDAKIS ◽  
Georgios KORAKIS

Understanding how the management practices of silvopastoral systems affect the long-term sustainability of oak ecosystems and what their influence is on nutrient cycling and plant community, is of great interest. The aim of this study was to examine the effects of relative grazing intensity on soil properties and on vegetation characteristics in an open canopy oak forest dominated by Quercus frainetto. The research was conducted in the area of Pentalofos, which is located in Evros region, north-eastern Greece and is grazed by goats. The distance from a goat corral was used to represent relative grazing intensity. In June 2011, soil and vegetation samples were collected along transects placed at 50, 150, 300, 600 and 1200 m from the goat corral, running perpendicular to three replicates. Soil measurements included pH, phosphorous (P) and nitrogen (N) concentrations while vegetation measurements included plant cover, species composition and diversity. Plant cover was not significantly different among grazing intensities. Species diversity, especially of the woody vegetation layer, was significantly higher in the light grazing intensity in comparison to both the heavy and the very light grazing. Heavy grazing reduced soil organic matter while it increased total nitrogen. Grazing intensity did not affect available P and soil pH. Light to moderate goat grazing could ameliorate floristic diversity and increase sustainability of oak forests in the Mediterranean region.


2000 ◽  
Vol 51 (8) ◽  
pp. 1047 ◽  
Author(s):  
Y. J. Ru ◽  
J. A. Fortune

With the decline in pasture quality in southern Australia, the development of management strategies to improve nutrient supply for grazing animals is essential and requires a clear understanding of the interaction between animals and plants. The impact of grazing intensity on the morphology of subterranean clover was previously examined. This paper reports the effect of grazing intensity on the nutritive value of subterranean clover, and the variation in quality of cultivars during the growing season. Grazing intensity influenced nutritive value and interacted with cultivar maturity. Heavy grazing depressed dry matter digestibility (DMD) by 5 percentage units in October for early maturity cultivars but increased DMD by 3 percentage units in September for mid maturity cultivars. The influence of grazing intensity on nitrogen content was small. Heavy grazing did not affect acid detergent fibre for the early maturity group, but depressed it for the mid maturity group throughout the season. Acid detergent lignin remained comparable for all cultivars during the season. Mineral content of subterranean clover showed variable response to grazing treatments. Nutritive value varied among cultivars within each maturity group. DMD ranged over 53–64%, 44–62%, and 45–53% for early, mid, and late maturity groups, respectively, at the end of the growing season. The cultivar rank in all nutritional parameters changed with the progress of the season. The large ranges in the decline rate of DMD within each maturity group during the last 8 weeks of growth gave an indication of the potential quality of the cultivars during late spring and early summer. Despite the variation in mineral content there were no cultivars in which the concentration of minerals was below the minimum requirements of sheep. These results indicate that there is a potential for the selection of high quality cultivars within a breeding program, and that indicative targets of grazing intensity need to be further developed with a focus on pasture quality.


Sign in / Sign up

Export Citation Format

Share Document