scholarly journals Molecular responses of arbuscular mycorrhizal fungi in tolerating root rot of trifoliate orange

2020 ◽  
Vol 48 (2) ◽  
pp. 558-571
Author(s):  
Shen CHENG ◽  
Li TIAN ◽  
Ying-Ning ZOU ◽  
Qiang-Sheng WU ◽  
Kamil KUČA ◽  
...  

Arbuscular mycorrhizal fungi (AMF) enhance plant disease resistance, while the underlying mechanisms in the molecular levels are not yet known. In this study, five-leaf-old trifoliate orange seedlings were inoculated with Funneliformis mosseae for 14 weeks and subsequently were infected by a citrus root rot pathogen Phytophthora parasitica by 7 days. The transcriptome results by Illumina HiSeq 4000 revealed that the percentage of Q30 bases reached 92.99% or above, and 29696 unigenes were annotated in a total of 63531 unigenes. 654 and 103 differentially expressed genes (DEGs) were respectively annotated in AMF-inoculated versus non-AMF-inoculated plants under non-infection and infection with P. parasitica, respectively, whilst these DEGs were related to defense mechanisms, signal transduction mechanisms and secondary metabolites biosynthesis. Forty-two genes were functionally annotated as the putative 'defense mechanism', whilst AMF inoculation induced 1 gene down-regulated and 3 genes up-regulated under P. parasitica infection. AMF inoculation stimulated more genes linked to signal transduction mechanism down-regulated than non-AMF plants. Eight genes were involved in secondary metabolites biosynthesis in AMF versus non-AMF seedlings under P. parasitica-infection conditions. Such transcriptome database provided total information in the molecular levels regarding mycorrhizal roles in tolerating Phytophthora parasitica infection.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Wang ◽  
Yin Wang

Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliataL. Raf.) and red tangerine (Citrus reticulataBlanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus ofGlomusSensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering withGlomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.


Plant Biology ◽  
2017 ◽  
Vol 19 (6) ◽  
pp. 926-933 ◽  
Author(s):  
L. Pistelli ◽  
V. Ulivieri ◽  
S. Giovanelli ◽  
L. Avio ◽  
M. Giovannetti ◽  
...  

2017 ◽  
Vol 12 (5) ◽  
pp. 159
Author(s):  
Marlina Puspita Sari ◽  
Bambang Hadisutrisno ◽  
Suryanti Suryanti

Arbuscular mycorrhizal fungi (AMF) is known to improve the growth of shallot (Allium cepa var. aggregatum) and strengthen the resistance of plants toward disease infection.  This research aimed to find out the roles of AMF in suppressing the development of purple blotch disease caused by  Alternaria sp. on shallot in Caturtunggal, Sleman, Yogyakarta.  Inoculation of AMF either on fertilization of N, P, K or without fertilization treatment resulted on higher plant height and number of leaves compared to those without AMF inoculation. The plant inoculated with AMF had lower purple blotch disease intensity and disease progression than control and fungicide treatment. The result showed that AMF, in addition to act as the bio-fertilizer, is a potential to be a biocontrol agent.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ziheng Song ◽  
Yinli Bi ◽  
Jian Zhang ◽  
Yunli Gong ◽  
Huihui Yang

Abstract It is urgent to restore the ecological function in open-pit mining areas on grassland in Eastern China. The open-pit mines have abundant of mining associated clay, which is desirable for using as a soil source for ecological restoration. The mining associated clay in Hulunbuir district, Inner Mongolia was selected and mixed with a sandy soil at a ratio of 1:1 (S_C soil). Also, effects of arbuscular mycorrhizal fungi (AMF) inoculation on soil functions were studied. The aboveground and underground biomass of maize in S_C soil was 1.49 and 2.41 times higher than that of clay soil, respectively. In the topsoil and S_C soil, the growth hormone (IAA) and cytokinin (CTK) levels of maize were higher than that of clay, while abscission acid (ABA) levels were lower. The inoculation with AMF could significantly improve the biomass of maize and enhance the stress resistance of plants. Through structural equation model (SEM) analyses, it was found that the soil type and AMF inoculation had the most direct impact on maize growth and biomass content. These finds extend our knowledge regarding a low-cost method for physical and biological improvement of mining associated clay, and to provide theoretical support for large-scale application in the future.


2019 ◽  
Vol 32 (2) ◽  
pp. 370-380
Author(s):  
EDUARDO MENDONÇA PINHEIRO ◽  
CAMILA PINHEIRO NOBRE ◽  
THAYANNA VIEIRA COSTA ◽  
ORLANDO CARLOS HUERTAS TAVARES ◽  
JOSÉ RIBAMAR GUSMÃO ARAUJO

ABSTRACT The use of beneficial microorganisms such as arbuscular mycorrhizal fungi (AMF) may favor both the growth phase and the stabilization of the seedlings after transplantation. The aim of this study was to evaluate the effect of inoculation of different AMF species on the development of Barbados cherry seedlings from herbaceous and semi-hardwood cuttings. Softwood and semi-hardwood cuttings, previously rooted, were planted in 500 ml tubes filled with Plantmax® substrate and inoculated with three species of mycorrhizal fungi (Gigaspora margarita - Gimarg, Claroideoglomus etunicatum - Claetun and Glomus clarum - Glclar) isolated and combined (Gimarg + Claetun, Gimarg + Glclar, Claetun + Glclar and Gimarg + Claetun + Glclar). The statistical design was completely randomized in factorial scheme 2 x 8 (two types of cuttings and eight types of inoculation, including control without AMF inoculation) with ten replications. The seedlings were kept in a greenhouse for 100 days and height was measured every 15 days to determine the absolute and relative growth rate (AGR and RGR). At the end of the experiment the seedlings were sacrificed and determined height, fresh and dry shoot mass and root and mycorrhizal colonization rate. The results indicate potential for production of Malpighia emarginata D.C. seedlings inoculated with AMF with tendency to reduce the time for transplanting. The Gimarg + Claetun combination promoted higher rates of absolute growth and height of seedlings from herbaceous cuttings. The species Glomus clarum, isolated or associated with C. etunicatum, promoted higher colonization rates in herbaceous and semi-hardwood seedlings, respectively.


2020 ◽  
Vol 110 (5) ◽  
pp. 999-1009 ◽  
Author(s):  
Golam Jalal Ahammed ◽  
Qi Mao ◽  
Yaru Yan ◽  
Meijuan Wu ◽  
Yaqi Wang ◽  
...  

Melatonin is a multifunctional molecule that confers tolerance to a number of biotic and abiotic stresses in plants. However, the role of melatonin in plant response to Fusarium oxysporum and the interaction with arbuscular mycorrhizal fungi (AMF) remain unclear. Here we show that exogenous melatonin application promoted the AMF colonization rate in cucumber roots, which potentially suppressed Fusarium wilt as evidenced by a decreased disease index and an increased control effect. Leaf gas exchange analysis revealed that Fusarium inoculation significantly decreased the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentrations (Ci), and transpiration rate (Tr). Intriguingly, either melatonin application or AMF inoculation significantly increased the Pn, Gs, Tr, and dry biomass, and their combined treatment showed a more profound effect under Fusarium stress. Further analysis showed that Fusarium induced oxidative stress as evidenced by increased lipid peroxidation and electrolyte leakage. Conversely, either melatonin or AMF drastically attenuated the levels of malondialdehyde, H2O2, and electrolyte leakage in Fusarium-inoculated plants, and their combined treatment caused a further decrease. Fusarium inoculation decreased the activity and transcripts of superoxide dismutase and ascorbate peroxidase, and the content of glutathione and proline. Besides, the activity and transcripts of peroxidase and catalase, the content of phenols and flavonoids increased after Fusarium infection. Importantly, melatonin and/or AMF significantly increased those parameters with the greatest effect with their combined treatment under Fusarium stress. Our results suggest that a positive collaboration between melatonin and AMF enhances resistance to Fusarium wilt in cucumber plants.


Sign in / Sign up

Export Citation Format

Share Document