scholarly journals Evaluation of Tomato Production Systems in Terms of Energy Use Efficiency and Economical Analysis in Iran

2011 ◽  
Vol 3 (4) ◽  
pp. 58-65 ◽  
Author(s):  
Parviz REZVANI MOGHADDAM ◽  
Hassan FEIZI ◽  
Farzad MONDANI

Efficient use of energy helps to achieve improved production and productivity, and contributes to economy, profitability and competitiveness of agricultural sustainability. The aim of the present study was to compare open field and greenhouse tomato production systems in terms of energy efficiency, energy intensiveness, energy productivity, benefit to cost ratio and amount of renewable and non-renewable energy uses. Data were collected from 128 and 16 open field and greenhouse tomato growers, respectively, by using a face-to-face questionnaire in 2010. The results showed that the total energy requirement under open field and greenhouse systems were 47647.12 and 2102678.73 MJ ha-1, respectively. The share of direct, indirect, renewable and non-renewable energies from total energy input which average in open field and greenhouse production systems were 74%, 26%, 17% and 83%, respectively. Energy use efficiency was achieved 1.42 and 0.18 in open field and greenhouse, respectively. The benefit to cost ratios of 2.33 in open field and 3.06 in greenhouse was recorded. Based on the present results, open field tomato production system had higher energy efficiency in comparison with greenhouse tomato production system while greenhouse system had a higher economical benefit.

Energy ◽  
2011 ◽  
Vol 36 (12) ◽  
pp. 6714-6719 ◽  
Author(s):  
Reza Pahlavan ◽  
Mahmoud Omid ◽  
Asadollah Akram

2020 ◽  
Vol 271 ◽  
pp. 122700 ◽  
Author(s):  
Gulab Singh Yadav ◽  
Subhash Babu ◽  
Anup Das ◽  
K.P. Mohapatra ◽  
Raghavendra Singh ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1892 ◽  
Author(s):  
Xiaoyan Zheng ◽  
Almas Heshmati

This paper investigates energy use efficiency at the province level in China using the stochastic frontier panel data model approach. The stochastic frontier model is a parametric model which allows for the modeling of the relationship between energy use and its determinants using different control variables. The main control variables in this paper are energy policy and environmental and regulatory variables. This paper uses province level data from all provinces in China for the period 2010–2017. Three different models are estimated accounting for the panel nature of the data; province-specific heterogeneity and province-specific energy inefficiency effects are separated. The models differ because of their underlying assumptions, but they also complement each other. The paper also explains the degree of inefficiency in energy use by its possible determinants, including those related to the public energy policy and environmental regulations. This research supplements existing research from the perspective of energy policy and regional heterogeneity. The paper identifies potential areas for improving energy efficiency in the western and northeastern regions of China. Its findings provide new empirical evidence for estimating and evaluating China’s energy efficiency and a transition to cleaner energy sources and production.


2016 ◽  
Vol 9 (1) ◽  
pp. 118 ◽  
Author(s):  
Khalil Allali ◽  
Boubaker Dhehibi ◽  
Shinan N. Kassam ◽  
Aden Aw-Hassan

<p>Energy use efficiency is a key requirement for sustainability in agricultural production, but often overlooked. The aim of this study was to quantify the amount and efficiency of energy consumed in the production of onions and potatoes in El Hajeb province of Morocco. These estimates are of significant importance in informing contemporary policy discourse related to energy subsidy reform in Morocco, and more specifically within an ongoing national strategy for ‘modernizing’ the agricultural sector under the ‘Green Morocco Plan’. Data were collected through the administration of a direct questionnaire with 60 farmers and analyzed using PLANETE. Our results indicate that total energy consumption in onion production is 107483 MJ ha<sup>-1</sup> with butane (79.5%) as the main source of direct energy. Chemical fertilizers (61.53%) and water for irrigation (30%) were main sources of indirect energy. Energy indices related to energy efficiency ratios, energy profitability and energy productivity were estimated at 0.78, -0.22 and 0.54 kg MJ<sup>-1</sup>, respectively. Total energy consumption in potato production was estimated at 74,270 MJ ha<sup>-1</sup>, with direct energy consumption of 28,521 MJ ha<sup>-1</sup> stemming from butane (70%) and diesel (19.14%) as primary sources. Indirect energy consumption was estimated at 45749 MJ ha<sup>-1</sup> and generated principally through the use of fertilizers (60%). Energy indices (efficiency, profitability and productivity) were estimated at 1.54, 0.54, and 0.45 kg MJ<sup>-1</sup>, respectively. GHG emissions were found to be 3.47 t CO<sub>2eq</sub> ha<sup>-1</sup> in the production of onions and 3.63 t CO<sub>2eq</sub> ha<sup>-1</sup> for potatoes. We find that within the study area, increases in the size of production plots are not necessarily consistent with increases in energy use efficiency.</p>


Author(s):  
Nawal Khamis Al-Mezeini ◽  
Abdulrahim M. Al-Ismaili ◽  
Said M. Tabook

Sustainable agricultural production could be assessed through energy-use efficiency (EUE). Thus, this paper aims to evaluate the EUE for cucumber greenhouse production in Oman. Data were obtained by interviewing farmers (face-to-face). Result indicated that total energy inputs (e.g. electricity, water, fertilizers and agrochemicals) and total energy output (cucumber yield) were 1159726.0 MJ ha-1 and 89942.9 MJ ha-1, respectively. The highest energy consuming input in the greenhouse production was electricity, consuming 88% of total energy input. This indicates that electricity had again the highest impact in cucumber greenhouse production and 99% of electricity goes for cooling the greenhouse. When all energy inputs were classified into its forms; direct (D) and indirect (ID), and renewable (R) and non-renewable (NR), the highest portion of total energy forms in greenhouse cucumber production was for D and NR energy. The EUE and energy productivity (EP) were found to be 0.07 and 0.10 kg MJ-1, respectively. Energy use in greenhouse cucumber production was inefficient and solar energy need to be implemented to improve cucumber greenhouse sustainability production.


2021 ◽  
Vol 67 (No. 12) ◽  
pp. 739-746
Author(s):  
Gerhard Moitzi ◽  
Reinhard Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

The effect of crop sequences (CR – continuous winter rye; CropR – three-field crop rotation of winter rye-spring barley-bare fallow) and fertilisation systems (unfertilised control, mineral fertiliser (NPK), farmyard manure (FYM)) on crop yield, energy efficiency indicators and land demand were analysed in a long-term experiment under Pannonian climate conditions. Due to lower fuel consumption in the bare fallow, the total fuel consumption for CropR was 27% lower than in CR. It was for NPK and FYM fertilisation by 29% and 42% higher than in the control. Although the energy output was lower in CropR than CR, the energy use efficiency for grain production increased by 35% and for above-ground biomass production by 20%. Overall crop sequences, the NPK treatment had higher crop yields, energy outputs and net-energy output with a lower energy use efficiency than the unfertilised control. CropR increased the land demand just by 20% in comparison to CR, although one-third of the land was not used for crop production. The land demand could be decreased with fertilisation by 50% (NPK) or 48% (FYM). A bare fallow year in the crop rotation decreased the crop yield, energy input and increased the energy use efficiency and land demand.  


2012 ◽  
Vol 99 (2) ◽  
Author(s):  
Sh. Lorzadeh ◽  
A. Mahdavidamghani ◽  
M. R. Enayatgholizadeh ◽  
M. Yousefi

2010 ◽  
Vol 25 (3) ◽  
pp. 196-203 ◽  
Author(s):  
Yuexian Liu ◽  
Henning Høgh-Jensen ◽  
Henrik Egelyng ◽  
Vibeke Langer

AbstractThe development of organic protected cultivation taking place in densely populated areas has raised the question whether it is an environmentally friendly production system. The present study investigated energy consumption of organic pear production in two production systems, namely in traditional Chinese solar greenhouses and in the open field. In both production systems, energy output/input ratio and energy productivity were used as indicators to determine the energy efficiency; yield, cost of production, net economic return per land area unit and benefit/cost ratio were used to evaluate economic productivity. The analysis results indicated that energy input and energy output per land area unit in the solar greenhouse were higher than in the open field; whereas energy efficiency in terms of output/input ratio and energy productivity were lower in the solar greenhouse than those in the open field. However, if energy input sequestered in the protected structure was excluded in the solar greenhouse production system, energy efficiency was higher in the greenhouse system than in the open-field system. Our analysis further showed that the economic costs, the yield, cost of production, gross product value and net income per land area unit in the greenhouse were more than twice as high as those in the open field due to a higher tree density and a premium price. However, the production taking place in the open field used a great share of renewable energy and higher energy efficiency, which may comply more with the principles of organic farming than the greenhouse production system.


Sign in / Sign up

Export Citation Format

Share Document