scholarly journals An Analysis of Energy Use Efficiency in China by Applying Stochastic Frontier Panel Data Models

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1892 ◽  
Author(s):  
Xiaoyan Zheng ◽  
Almas Heshmati

This paper investigates energy use efficiency at the province level in China using the stochastic frontier panel data model approach. The stochastic frontier model is a parametric model which allows for the modeling of the relationship between energy use and its determinants using different control variables. The main control variables in this paper are energy policy and environmental and regulatory variables. This paper uses province level data from all provinces in China for the period 2010–2017. Three different models are estimated accounting for the panel nature of the data; province-specific heterogeneity and province-specific energy inefficiency effects are separated. The models differ because of their underlying assumptions, but they also complement each other. The paper also explains the degree of inefficiency in energy use by its possible determinants, including those related to the public energy policy and environmental regulations. This research supplements existing research from the perspective of energy policy and regional heterogeneity. The paper identifies potential areas for improving energy efficiency in the western and northeastern regions of China. Its findings provide new empirical evidence for estimating and evaluating China’s energy efficiency and a transition to cleaner energy sources and production.

2021 ◽  
Vol 67 (No. 12) ◽  
pp. 739-746
Author(s):  
Gerhard Moitzi ◽  
Reinhard Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

The effect of crop sequences (CR – continuous winter rye; CropR – three-field crop rotation of winter rye-spring barley-bare fallow) and fertilisation systems (unfertilised control, mineral fertiliser (NPK), farmyard manure (FYM)) on crop yield, energy efficiency indicators and land demand were analysed in a long-term experiment under Pannonian climate conditions. Due to lower fuel consumption in the bare fallow, the total fuel consumption for CropR was 27% lower than in CR. It was for NPK and FYM fertilisation by 29% and 42% higher than in the control. Although the energy output was lower in CropR than CR, the energy use efficiency for grain production increased by 35% and for above-ground biomass production by 20%. Overall crop sequences, the NPK treatment had higher crop yields, energy outputs and net-energy output with a lower energy use efficiency than the unfertilised control. CropR increased the land demand just by 20% in comparison to CR, although one-third of the land was not used for crop production. The land demand could be decreased with fertilisation by 50% (NPK) or 48% (FYM). A bare fallow year in the crop rotation decreased the crop yield, energy input and increased the energy use efficiency and land demand.  


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1835
Author(s):  
Robert Oliver Simon ◽  
Kurt-Jürgen Hülsbergen

The main objective of the cultivation of energy crops is the production of renewable energy, the substitution of fossil energy resources, and a substantial contribution to energy supply. Thus, energy yield and energy efficiency are the most important criteria for the assessment of energy crops and biomass-based renewable energy chains. Maize is the energy crop with the highest cultivation acreage in Germany because of its high energy yields, but is the subject of controversial debate because of possible detrimental effects on agro-ecosystems. This raises the question as to which energy crops and production systems could be used instead of maize, in order to increase crop diversity and lower environmental impacts. We examined yields, energy inputs, energy outputs, and energy efficiency of alternative energy crops (combinations of catch crops and main crops) compared to maize in four-year field experiments at three southern German sites by means of process analyses. Maize showed moderate energy inputs (11.3–13.2 GJ ha−1), with catch crops ranging from 6.2 to 10.7 GJ ha−1 and main crops ranging from 7.6 to 24.8 GJ ha−1. At all three sites, maize had the highest net energy output compared to the other crops (x¯ = 354–493 GJ ha−1), but was surpassed by combinations of catch and main crops at some sites (winter rye/maize: x¯ = 389–538 GJ ha−1). Although some combinations yielded higher net energy outputs than maize, no other crop or combination of crops outperformed maize regarding energy use efficiency (energy output/energy input: x¯ = 32–45).


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3954
Author(s):  
Oleg Badunenko ◽  
Subal C. Kumbhakar

We analyze energy use efficiency of manufacturing industries in US manufacturing over five decades from 1960 to 2011. We apply a 4-component stochastic frontier model, which allows disentangling efficiency into a short- and long-term efficiency as well as accounting for industry heterogeneity. The data come from NBER-CES Manufacturing Industry Database. We find that relative to decade-specific frontiers, the overall efficiency of manufacturing industries, which is a product of transient and persistent efficiencies has deteriorated greatly in the 1970s and rebounded only in the 2000s. The industries are very efficient in the short-term and this has not changed over five decades. The high level of overall inefficiency is almost completely due to the structural inefficiency which can be explained by what is referred to as the “energy paradox”. Finally, higher energy-intensive industries perform worse in terms of energy use efficiency than their low energy-intensity counterparts.


2018 ◽  
Vol 29 (1) ◽  
pp. 34-48 ◽  
Author(s):  
Jin-Li Hu ◽  
Ming-Chung Chang ◽  
Hui-Wen Tsay

Purpose The purpose of this paper is to explore Taiwan’s regional energy efficiency trend and complement the work of the total-factor energy efficiency (TFEE) index proposed by Hu and Wang (2006). It further extends panel data stochastic frontier analysis (SFA) modeling for estimating disaggregate energy efficiency. Design/methodology/approach This paper applies the panel data stochastic production frontier to estimate the TFEE scores for 20 administrative regions in Taiwan over the period 2004-2015. The SFA models include five inputs (employed population, amount of productive electricity power consumed, amount of electricity consumed for household and non-household electric lighting, amount of gasoline sales, and amount of diesel sales) and one output (total real income in the base year of 2011). Findings This research concludes with three main findings: the inefficient administrative regions of Taiwan include mostly large industrial parks and the petrochemical industry cluster; the top five administrative regions with inefficient diesel use are mostly metropolitan areas that the concern of air pollution caused by diesel system arouses the awareness to use less diesel fuel; and the average TFEE score on household and non-household electric lighting is higher than the usage efficiency of productive electricity power, gasoline, and diesel, but there is still room for efficiency improvement. Originality/value Most administrative regions in Taiwan are not efficient in almost all kinds of energy use. The results show that the efficiencies of using productive electricity power, gasoline, and diesel need to be improved a lot more.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Donghai Zhou ◽  
Binxia Chen ◽  
Jiahui Li ◽  
Yuanying Jiang

This paper analyzes the time-varying impacts of Chinaʼs economic growth, energy efficiency, and industrial development on carbon dioxide (CO2) emissions from 1970 to 2019. First, we examined and found that there are two significant structural changes in the CO2 sequence over the years, and there was a significant nonlinear relationship among the four. The first nonlinear structural model constructed is the TVP regression model. According to the Bayesian model comparison criterion, TVP-SV-VAR was selected as the second constructed model from four types of VAR models containing nonlinear structures. The results show that the conduction intensity value of energy use efficiency to CO2 emissions has increased year by year, from 0.45 in 1971 to 0.97 in 2019. The short-term transmission mechanism of energy use efficiency to carbon emissions is the most significant. The conduction intensity of Chinaʼs economic growth on CO2 emissions increases year by year. Chinaʼs economic growth plays a major role in long-term CO2 emission reduction. The impact of industrial development on CO2 emissions reached a peak of 0.34 in 1977, and the intensity of the impact has basically stabilized at 0.26.


2011 ◽  
Vol 3 (4) ◽  
pp. 58-65 ◽  
Author(s):  
Parviz REZVANI MOGHADDAM ◽  
Hassan FEIZI ◽  
Farzad MONDANI

Efficient use of energy helps to achieve improved production and productivity, and contributes to economy, profitability and competitiveness of agricultural sustainability. The aim of the present study was to compare open field and greenhouse tomato production systems in terms of energy efficiency, energy intensiveness, energy productivity, benefit to cost ratio and amount of renewable and non-renewable energy uses. Data were collected from 128 and 16 open field and greenhouse tomato growers, respectively, by using a face-to-face questionnaire in 2010. The results showed that the total energy requirement under open field and greenhouse systems were 47647.12 and 2102678.73 MJ ha-1, respectively. The share of direct, indirect, renewable and non-renewable energies from total energy input which average in open field and greenhouse production systems were 74%, 26%, 17% and 83%, respectively. Energy use efficiency was achieved 1.42 and 0.18 in open field and greenhouse, respectively. The benefit to cost ratios of 2.33 in open field and 3.06 in greenhouse was recorded. Based on the present results, open field tomato production system had higher energy efficiency in comparison with greenhouse tomato production system while greenhouse system had a higher economical benefit.


Author(s):  
Serge Wendsida Igo ◽  
David Namoano ◽  
Abdoulaye Compaoré ◽  
Gaël Lassina Sawadogo ◽  
Drissa Ouedraogo ◽  
...  

This work concerns the energy efficiency study and analysis of a gas roasting oven developed by a local craftsman. The oven energy efficiency was determined by the Water Boiling Test (WBT) method. The temperatures of the walls as well as the ambient temperature were recorded to evaluate the heat losses by convection towards the environment. The energy balance of the oven then allows to calculate the heat losses from the fumes. The results show that the heat losses by fumes through the chimney are the greatest (50% of the energy consumed). Losses through the walls are relatively low (15%). The oven efficiency is around 35%, which is relatively low. These results show that optimization work must be carried out in order to improve the energy efficiency of the equipment.


Sign in / Sign up

Export Citation Format

Share Document