scholarly journals Optimal Routing Strategy Based on Specifying Shortest Path

Author(s):  
Fei Shao ◽  
Binghua Cheng
2021 ◽  
Author(s):  
Linh Nguyen

<pre>The paper addresses the problem of efficiently planning routes for multiple ground vehicles used in goods delivery services. Given popularity of today's e-commerce, particularly under the COVID-19 pandemic conditions, goods delivery services have been booming than ever, dominated by small-scaled (electric) bikes and promised by autonomous vehicles. However, finding optimal routing paths for multiple delivery vehicles operating simultaneously in order to minimize transportation cost is a fundamental but challenging problem. In this paper, it is first proposed to exploit the mixed integer programming paradigm to model the delivery routing optimization problem (DROP) for multiple simultaneously-operating vehicles given their energy constraints. The routing optimization problem is then solved by the multi-chromosome genetic algorithm, where the number of delivery vehicles can be optimized. The proposed approach was evaluated in a real-world experiment in which goods were expected to be delivered from a depot to 26 suburb locations in Canberra, Australia. The obtained results demonstrate effectiveness of the proposed algorithm.</pre>


2015 ◽  
Vol 29 (25) ◽  
pp. 1550149
Author(s):  
Zhanli Zhang

Coupling entropy of co-processing model on social networks is investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are achieved to disclose the formation. In order to understand the evolution of the co-processing and design the optimal routing strategy according to the maximal entropic diffusion on networks, we propose the coupling entropy comprehending the structural characteristics and information propagation on social network. Based on the analysis of the co-processing model, we analyze the coupling impact of the structural factor and information propagating factor on the coupling entropy, where the analytical results fit well with the numerical ones on scale-free social networks.


2000 ◽  
Vol 01 (02) ◽  
pp. 115-134 ◽  
Author(s):  
TSENG-KUEI LI ◽  
JIMMY J. M. TAN ◽  
LIH-HSING HSU ◽  
TING-YI SUNG

Given a shortest path routing algorithm of an interconnection network, the edge congestion is one of the important factors to evaluate the performance of this algorithm. In this paper, we consider the twisted cube, a variation of the hypercube with some better properties, and review the existing shortest path routing algorithm8. We find that its edge congestion under the routing algorithm is high. Then, we propose a new shortest path routing algorithm and show that our algorithm has optimum time complexity O(n) and optimum edge congestion 2n. Moreover, we calculate the bisection width of the twisted cube of dimension n.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2336 ◽  
Author(s):  
Chih-Min Yu ◽  
Mohammad Tala’t ◽  
Chun-Hao Chiu ◽  
Chin-Yao Huang

Nowadays, wireless sensor networks (WSNs) are becoming increasingly popular due to the wide variety of applications. The network can be utilized to collect and transmit numerous types of messages to a data sink in a many-to-one fashion. The WSNs usually contain sensors with low communication ability and limited battery power, and the battery replacement is difficult in WSNs for large amount embedded nodes, which indicates a balanced routing strategy is essential to be developed for an extensive operation lifecycle. To realize the goal, the research challenges require not only to minimize the energy consumption in each node but also to balance the whole WSNs traffic load. In this article, a Shortest Path Tree with Energy Balance Routing strategy (SPT-EBR) based on a forward awareness factor is proposed. In SPT-EBR, Two methods are presented including the power consumption and the energy harvesting schemes to select the forwarding node according to the awareness factors of link weight. First, the packet forwarding rate factor is considered in the power consumption scheme to update the link weight for the sensors with higher power consumption and mitigate the traffic load of hotspot nodes to achieve the energy balance network. With the assistance of the power consumption scheme, hotspot nodes can be transferred from the irregular location to the same intra-layer from the sink. Based on this feature, the energy harvesting scheme combines both the packet forwarding rate and the power charging rate factors together to update the link weight with a new battery charging rate factor for hotspot nodes. Finally, simulation results validate that both power consumption and energy harvesting schemes in SPT-EBR achieve better energy balance performance and save more charging power than the conventional shortest path algorithm and thus improve the overall network lifecycle.


2014 ◽  
Vol 25 (09) ◽  
pp. 1450044 ◽  
Author(s):  
Zhong-Yuan Jiang

The link congestion based traffic model can more accurately reveal the traffic dynamics of many real complex networks such as the Internet, and heuristically optimizing each link's weight for the shortest path routing strategy can strongly improve the traffic capacity of network. In this work, we propose an optimal routing strategy in which the weight of each link is regulated incrementally to enhance the network traffic capacity by minimizing the maximum link betweenness of any link in the network. We also estimate more suitable value of the tunable parameter β for the efficient routing strategy under the link congestion based traffic model. The traffic load of network can be significantly balanced at the expense of increasing a bit average path length or average traffic load.


2017 ◽  
Vol 28 (11) ◽  
pp. 1750129 ◽  
Author(s):  
Fan Ye ◽  
Lei Zhang ◽  
Bing-Hong Wang ◽  
Lu Liu ◽  
Xing-Yi Zhang

The routing strategy plays a very important role in complex networks such as Internet system and Peer-to-Peer networks. However, most of the previous work concentrates only on the path selection, e.g. Flooding and Random Walk, or finding the shortest path (SP) and rarely considering the local load information such as SP and Distance Vector Routing. Flow-based Routing mainly considers load balance and still cannot achieve best optimization. Thus, in this paper, we propose a novel dynamic routing strategy on complex network by incorporating the local load information into SP algorithm to enhance the traffic flow routing optimization. It was found that the flow in a network is greatly affected by the waiting time of the network, so we should not consider only choosing optimized path for package transformation but also consider node congestion. As a result, the packages should be transmitted with a global optimized path with smaller congestion and relatively short distance. Analysis work and simulation experiments show that the proposed algorithm can largely enhance the network flow with the maximum throughput within an acceptable calculating time. The detailed analysis of the algorithm will also be provided for explaining the efficiency.


Sign in / Sign up

Export Citation Format

Share Document