scholarly journals Approximate Membership Function Shapes of Solutions to Intuitionistic Fuzzy Transportation Problems

Author(s):  
Bogdana Stanojevic ◽  
Milan Stanojević

In this paper, proposing a mathematical model with disjunctive constraint system, and providing approximate membership function shapes to the optimal values of the decision variables, we improve the solution approach to transportation problems with trapezoidal fuzzy parameters. We further extend the approach to solving transportation problems with intuitionistic fuzzy parameters; and compare the membership function shapes of the fuzzy solutions obtained by our approach to the fuzzy solutions to full fuzzy transportation problems yielded by approaches found in the literature.

2007 ◽  
Vol 29 (2) ◽  
pp. 117-126
Author(s):  
Nguyen Van Pho

The fuzzy analyzing process consists of different steps. In this paper, the author considers only the method for formulation of the membership function of fuzzy loads acting on the structure. Based on the membership function of fuzzy loads, the combinations of deterministic of the regression analyzing process will be determined. The membership function of fuzzy loads is selected by the triangular membership function. It is in conformity with the concept on selection of loads in the design standards. The combination of inputs for the analyzing process will be determined, based on the number of present times of the value of input parameters (including the deterministic parameters, fuzzy parameters and the random ones) in the schema of analysis. The number of present times of input parameters is either proportional to value of the corresponding membership function or to the value of the probabilistic density function. A method for determining the appropriate combination of deterministic inputs so that each input parameter will present only one time in each combination is proposed. To illustrate the proposed method, an example on the determination of input combinations of tornado's velocity in Vietnam is presented.


2020 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Dian Pratama

Intuitionistic fuzzy sets is a sets that are characterized by membership and non-membership function which  sum is less than one. When applied to ring theory, it will called intuitionistic fuzzy rings. The fuzzy set operator is a mapping between the membership function and the interval [0,1]. In this study, we will describe properties of operator  and  in intuitionistic fuzzy rings. The characteristics that will be studied include the structure of  and  if A is an intuitive and fuzzy ring and vice versa.


2021 ◽  
Vol 27 (1) ◽  
pp. 24-52
Author(s):  
Cengiz Kahraman ◽  
◽  
Nurşah Alkan ◽  

The membership function of a general type-2 fuzzy set is three-dimensional in order to incorporate its vagueness through the third dimension. Similarly, Circular intuitionistic fuzzy sets (CIFSs) have been recently introduced by Atanassov (2020) as a new extension of intuitionistic fuzzy sets, which are represented by a circle representing the vagueness of the membership function. CIFSs allow decision-makers to express their judgments including this vagueness. In this study, the TOPSIS method, which is one of the most used multi-criteria decision-making methods is extended to its CIF version. The proposed CIF-TOPSIS methodology is applied to the supplier selection problem. Then, a sensitivity analysis based on criteria weights is conducted to check the robustness of the proposed approach. A comparative analysis with single-valued intuitionistic fuzzy TOPSIS method is also performed to verify the developed approach and to demonstrate its effectiveness


2015 ◽  
Vol 1 (3(73)) ◽  
pp. 4 ◽  
Author(s):  
Тетяна Василівна Бутько ◽  
Олександр Борисович Бабанін ◽  
Олександр Миколайович Горобченко

2020 ◽  
Vol 9 (11) ◽  
pp. 9273-9286
Author(s):  
N. Rameshan ◽  
D.S. Dinagar

The concept of this paper represents finding fuzzy critical path using octagonal fuzzy number. In project scheduling, a new method has been approached to identify the critical path by using Symmetric Octagonal Intuitionistic Fuzzy Number (SYMOCINTFN). For getting a better solution, we use the fuzzy octagonal number rather than other fuzzy numbers. The membership functions of the earliest and latest times of events are by calculating lower and upper bounds of the earliest and latest times considering octagonal fuzzy duration. The resulting conditions omit the negative and infeasible solution. The membership function takes up an essential role in finding a new solution. Based on membership function, fuzzy number can be identified in different categories such as Triangular, Trapezoidal, pentagonal, hexagonal, octagonal, decagonal, hexa decagonal fuzzy numbers etc.


2018 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Syarifah Inayati

Bilevel multiobjective programming problems are mathematical programming that solves the problem of planning with two decision makers (DM) in two level or hierarchical organization with the objective function of each organization can be more than one. In this paper, we discussed the special case of this problem with single decision maker at the upper level and multiple decision makers at the lower level. This problem can be solved using fuzzy goal programming (FGP) approach. In this approach, the membership function for the defined fuzzy goals of all objective functions of DMs at the two levels was developed first in the model formulation of the problem. Thus the membership function for vector of fuzzy goals of the decision variables controlled by the leader. Then FGP approach requires the leader to set goals for each objective that he/she wishes to attain. A preferred solution is then defined for minimizes the deviations from the set of goals. Numerical example is provided to illustrate the approach.


Author(s):  
Kedar Nath Das ◽  
Rajeev Das ◽  
Debi Prasanna Acharjya

AbstractTransportation problem (TP) is a popular branch of Linear Programming Problem in the field of Transportation engineering. Over the years, attempts have been made in finding improved approaches to solve the TPs. Recently, in Quddoos et al. (Int J Comput Sci Eng (IJCSE) 4(7): 1271–1274, 2012), an efficient approach, namely ASM, is proposed for solving crisp TPs. However, it is found that ASM fails to provide better optimal solution in some cases. Therefore, a new and efficient ASM appoach is proposed in this paper to enhance the inherent mechanism of the existing ASM method to solve both crisp TPs and Triangular Intuitionistic Fuzzy Transportation Problems (TIFTPs). A least-looping stepping-stone method has been employed as one of the key factors to improve the solution quality, which is an improved version of the existing stepping-stone method (Roy and Hossain in, Operation research Titus Publication, 2015). Unlike stepping stone method, least-looping stepping-stone method only deals with few selected non-basic cells under some prescribed conditions and hence minimizes the computational burden. Therefore, the framework of the proposed method (namely LS-ASM) is a combination of ASM (Quddoos et al. 2012) and least-looping stepping-stone approach. To validate the performance of LS-ASM, a set of six case studies and a real-world problem (those include both crisp TPs and TIFTPs) have been solved. The statistical results obtained by LS-ASM have been well compared with the existing popular modified distribution (MODI) method and the original ASM method, as well. The statistical results confirm the superiority of the LS-ASM over other compared algorithms with a less computationl effort.


Author(s):  
Firoz Ahmad

AbstractThis study presents the modeling of the multiobjective optimization problem in an intuitionistic fuzzy environment. The uncertain parameters are depicted as intuitionistic fuzzy numbers, and the crisp version is obtained using the ranking function method. Also, we have developed a novel interactive neutrosophic programming approach to solve multiobjective optimization problems. The proposed method involves neutral thoughts while making decisions. Furthermore, various sorts of membership functions are also depicted for the marginal evaluation of each objective simultaneously. The different numerical examples are presented to show the performances of the proposed solution approach. A case study of the cloud computing pricing problem is also addressed to reveal the real-life applications. The practical implication of the current study is also discussed efficiently. Finally, conclusions and future research scope are suggested based on the proposed work.


2020 ◽  
Vol 39 (3) ◽  
pp. 4427-4441
Author(s):  
Bin Xu

The concept of fuzzy number intuitionistic fuzzy sets (FNIFSs) is designed to effectively depict uncertain information in decision making problems which fundamental characteristic of the FNIFS is that the values of its membership function and non-membership function are depicted with triangular fuzzy numbers (TFNs). The dual Hamy mean (DHM) operator gets good performance in the process of information aggregation due to its ability to capturing the interrelationships among aggregated values. In this paper, we used the dual Hamy mean (DHM) operator and dual weighted Hamy mean (WDHM) operator with fuzzy number intuitionistic fuzzy numbers (FNIFNs) to propose the fuzzy number intuitionistic fuzzy dual Hamy mean (FNIFDHM) operator and fuzzy number intuitionistic fuzzy weighted dual Hamy mean (FNIFWDHM) operator. Then the MADM methods are proposed along with these operators. In the end, we utilize an applicable example for computer network security evaluation to prove the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document