scholarly journals Brain Size or Brain Organization and Intelligence

1998 ◽  
Vol 12 (6) ◽  
pp. 48
Author(s):  
J Gordon Millichap
Author(s):  
Elisabeth A. Murray ◽  
Steven P. Wise ◽  
Mary K. L. Baldwin ◽  
Kim S. Graham

In the epilogue, a couple of kids befriend a shy stegosaurus; a different stegosaurus worries about the rise of mammals; and a tyrannosaurus presents a situation report. But mainly we consider reptilian brains, the relationship of brain size to intelligence, and the evolutionary success of mammals. Contrary to an internet meme, no one has a “reptilian” or “lizard” brain lurking within. Our entire brain is human. Regarding intelligence, brain organization matters as much as brain size and maybe more. Once dinosaurs became extinct, the mammals that supplanted them had much smaller brains than large dinosaurs had. Instead, the success of mammals depended on the emergence of the neocortex, a new part of the brain. Eventually, this evolutionary innovation came to dominate both the brain and the memories that it contains.


Science ◽  
2018 ◽  
Vol 360 (6394) ◽  
pp. 1222-1227 ◽  
Author(s):  
P. K. Reardon ◽  
Jakob Seidlitz ◽  
Simon Vandekar ◽  
Siyuan Liu ◽  
Raihaan Patel ◽  
...  

Brain size variation over primate evolution and human development is associated with shifts in the proportions of different brain regions. Individual brain size can vary almost twofold among typically developing humans, but the consequences of this for brain organization remain poorly understood. Using in vivo neuroimaging data from more than 3000 individuals, we find that larger human brains show greater areal expansion in distributed frontoparietal cortical networks and related subcortical regions than in limbic, sensory, and motor systems. This areal redistribution recapitulates cortical remodeling across evolution, manifests by early childhood in humans, and is linked to multiple markers of heightened metabolic cost and neuronal connectivity. Thus, human brain shape is systematically coupled to naturally occurring variations in brain size through a scaling map that integrates spatiotemporally diverse aspects of neurobiology.


2019 ◽  
Vol 93 (1) ◽  
pp. 4-18 ◽  
Author(s):  
J. Frances Kamhi ◽  
Iulian Ilieş ◽  
James F.A. Traniello

The behavioral demands of living in social groups have been linked to the evolution of brain size and structure, but how social organization shapes investment and connectivity within and among functionally specialized brain regions remains unclear. To understand the influence of sociality on brain evolution in ants, a premier clade of eusocial insects, we statistically analyzed patterns of brain region size covariation as a proxy for brain region connectivity. We investigated brain structure covariance in young and old workers of two formicine ants, the Australasian weaver ant Oecophylla smaragdina, a pinnacle of social complexity in insects, and its socially basic sister clade Formica subsericea. As previously identified in other ant species, we predicted that our analysis would recognize in both species an olfaction-related brain module underpinning social information processing in the brain, and a second neuroanatomical cluster involved in nonolfactory sensorimotor processes, thus reflecting conservation of compartmental connectivity. Furthermore, we hypothesized that covariance patterns would reflect divergence in social organization and life histories either within this species pair or compared to other ant species. Contrary to our predictions, our covariance analyses revealed a weakly defined visual, rather than olfactory, sensory processing cluster in both species. This pattern may be linked to the reliance on vision for worker behavioral performance outside of the nest and the correlated expansion of the optic lobes to meet navigational demands in both species. Additionally, we found that colony size and social organization, key measures of social complexity, were only weakly correlated with brain modularity in these formicine ants. Worker age also contributed to variance in brain organization, though in different ways in each species. These findings suggest that brain organization may be shaped by the divergent life histories of the two study species. We compare our findings with patterns of brain organization of other eusocial insects.


2014 ◽  
Vol 281 (1784) ◽  
pp. 20140217 ◽  
Author(s):  
Mario L. Muscedere ◽  
Wulfila Gronenberg ◽  
Corrie S. Moreau ◽  
James F. A. Traniello

The extent to which size constrains the evolution of brain organization and the genesis of complex behaviour is a central, unanswered question in evolutionary neuroscience. Advanced cognition has long been linked to the expansion of specific brain compartments, such as the neocortex in vertebrates and the mushroom bodies in insects. Scaling constraints that limit the size of these brain regions in small animals may therefore be particularly significant to behavioural evolution. Recent findings from studies of paper wasps suggest miniaturization constrains the size of central sensory processing brain centres (mushroom body calyces) in favour of peripheral, sensory input centres (antennal and optic lobes). We tested the generality of this hypothesis in diverse eusocial hymenopteran species (ants, bees and wasps) exhibiting striking variation in body size and thus brain size. Combining multiple neuroanatomical datasets from these three taxa, we found no universal size constraint on brain organization within or among species. In fact, small-bodied ants with miniscule brains had mushroom body calyces proportionally as large as or larger than those of wasps and bees with brains orders of magnitude larger. Our comparative analyses suggest that brain organization in ants is shaped more by natural selection imposed by visual demands than intrinsic design limitations.


Author(s):  
C. S. Potter ◽  
C. D. Gregory ◽  
H. D. Morris ◽  
Z.-P. Liang ◽  
P. C. Lauterbur

Over the past few years, several laboratories have demonstrated that changes in local neuronal activity associated with human brain function can be detected by magnetic resonance imaging and spectroscopy. Using these methods, the effects of sensory and motor stimulation have been observed and cognitive studies have begun. These new methods promise to make possible even more rapid and extensive studies of brain organization and responses than those now in use, such as positron emission tomography.Human brain studies are enormously complex. Signal changes on the order of a few percent must be detected against the background of the complex 3D anatomy of the human brain. Today, most functional MR experiments are performed using several 2D slice images acquired at each time step or stimulation condition of the experimental protocol. It is generally believed that true 3D experiments must be performed for many cognitive experiments. To provide adequate resolution, this requires that data must be acquired faster and/or more efficiently to support 3D functional analysis.


1995 ◽  
Vol 50 (11) ◽  
pp. 947-948 ◽  
Author(s):  
Michael Peters
Keyword(s):  

2013 ◽  
Author(s):  
Christine Chiarello ◽  
Richard L. Miller
Keyword(s):  

2019 ◽  
Author(s):  
Sam G. B. Roberts ◽  
Anna Roberts

Group size in primates is strongly correlated with brain size, but exactly what makes larger groups more ‘socially complex’ than smaller groups is still poorly understood. Chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) are among our closest living relatives and are excellent model species to investigate patterns of sociality and social complexity in primates, and to inform models of human social evolution. The aim of this paper is to propose new research frameworks, particularly the use of social network analysis, to examine how social structure differs in small, medium and large groups of chimpanzees and gorillas, to explore what makes larger groups more socially complex than smaller groups. Given a fission-fusion system is likely to have characterised hominins, a comparison of the social complexity involved in fission-fusion and more stable social systems is likely to provide important new insights into human social evolution


Sign in / Sign up

Export Citation Format

Share Document