Proteins of the Hedgehog signaling pathway as therapeutic targets against cancer

2010 ◽  
Vol 7 (4) ◽  
pp. 601-612 ◽  
Author(s):  
Rony Nehmé ◽  
Isabelle Mus-Veteau
Chemotherapy ◽  
2021 ◽  
Author(s):  
Jiujian Zheng ◽  
Chuan Cheng ◽  
Jie Xu ◽  
Peng Gao ◽  
Jianping Wang ◽  
...  

Objectives: Colon cancer (CC) is the third largest cancer worldwide. Investigation of the molecular mechanism of CC progression helps to explore novel therapeutic targets. We attempted to understand the modulatory mechanism of miR-142-3p in CC cell autophagy and CC progression, which will lay a theoretical groundwork for seeking potential diagnostic and therapeutic targets for CC. Methods: Through bioinformatics methods, miRNA expression data were subjected to differential analysis for identification of target miRNA. Downstream target mRNAs were predicted and gene set enrichment analysis (GSEA) was completed. qRT-PCR assessed gene expression in cells. Cell Counting Kit-8, cell doubling time calculation, colony formation, and flow cytometry were used to assess cellular biological functions. Dual-luciferase assay was used for targeting relationship validation of the target miRNA and mRNA. Western blot was performed to evaluate expression of proteins related to HEDGEHOG signaling pathway and autophagy. Results: miR-142-3p was markedly highly expressed in CC, and high miR-142-3p expression in CC patients was implicated with relatively poor prognosis. Over-expressing miR-142-3p facilitated proliferation and inhibited apoptosis of CC cells, whereas silencing it produced an opposite result. miR-142-3p targeted and decreased TP53INP2 level. TP53INP2 over-expression suppressed the HEDGEHOG signaling pathway and induced the activation of CC cell autophagy. Rescue experiments revealed that influence of miR-142-3p inhibitor on CC cell proliferation and apoptosis could be reversed by silencing TP53INP2. Conclusion: miR-142-3p hampered tumor cell autophagy and promoted CC progression via targeting TP53INP2, which will offer a fresh research orientation for the diagnosis of CC.


Author(s):  
Yuan Gu ◽  
Xiaochen Liu ◽  
Lele Liao ◽  
Yongquan Gao ◽  
Yu Shi ◽  
...  

Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2894-2903 ◽  
Author(s):  
Shinichi Miyagawa ◽  
Daisuke Matsumaru ◽  
Aki Murashima ◽  
Akiko Omori ◽  
Yoshihiko Satoh ◽  
...  

During embryogenesis, sexually dimorphic organogenesis is achieved by hormones produced in the gonad. The external genitalia develop from a single primordium, the genital tubercle, and their masculinization processes depend on the androgen signaling. In addition to such hormonal signaling, the involvement of nongonadal and locally produced masculinization factors has been unclear. To elucidate the mechanisms of the sexually dimorphic development of the external genitalia, series of conditional mutant mouse analyses were performed using several mutant alleles, particularly focusing on the role of hedgehog signaling pathway in this manuscript. We demonstrate that hedgehog pathway is indispensable for the establishment of male external genitalia characteristics. Sonic hedgehog is expressed in the urethral plate epithelium, and its signal is mediated through glioblastoma 2 (Gli2) in the mesenchyme. The expression level of the sexually dimorphic genes is decreased in the glioblastoma 2 mutant embryos, suggesting that hedgehog signal is likely to facilitate the masculinization processes by affecting the androgen responsiveness. In addition, a conditional mutation of Sonic hedgehog at the sexual differentiation stage leads to abnormal male external genitalia development. The current study identified hedgehog signaling pathway as a key factor not only for initial development but also for sexually dimorphic development of the external genitalia in coordination with androgen signaling.


2004 ◽  
Vol 323 (2) ◽  
pp. 523-533 ◽  
Author(s):  
Norihisa Shindo ◽  
Atsushi Sakai ◽  
Kouji Yamada ◽  
Toru Higashinakagawa

Sign in / Sign up

Export Citation Format

Share Document