Targeting hedgehog signaling pathway in pediatric tumors: in vitro evaluation of SMO and GLI inhibitors

2016 ◽  
Vol 77 (3) ◽  
pp. 495-505 ◽  
Author(s):  
Viktor Arnhold ◽  
Joachim Boos ◽  
Claudia Lanvers-Kaminsky
2021 ◽  
Vol 12 ◽  
Author(s):  
Ming Ji ◽  
Zhihui Zhang ◽  
Songwen Lin ◽  
Chunyang Wang ◽  
Jing Jin ◽  
...  

Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system. Temozolomide (TMZ)–based adjuvant treatment has improved overall survival, but clinical outcomes remain poor; TMZ resistance is one of the main reasons for this. Here, we report a new phosphatidylinositide 3-kinase inhibitor, XH30; this study aimed to assess the antitumor activity of this compound against TMZ-resistant GBM. XH30 inhibited cell proliferation in TMZ-resistant GBM cells (U251/TMZ and T98G) and induced cell cycle arrest in the G1 phase. In an orthotopic mouse model, XH30 suppressed TMZ-resistant tumor growth. XH30 was also shown to enhance TMZ cytotoxicity both in vitro and in vivo. Mechanistically, the synergistic effect of XH30 may be attributed to its repression of the key transcription factor GLI1 via the noncanonical hedgehog signaling pathway. XH30 reversed sonic hedgehog–triggered GLI1 activation and decreased GLI1 activation by insulin-like growth factor 1 via the noncanonical hedgehog signaling pathway. These results indicate that XH30 may represent a novel therapeutic option for TMZ-resistant GBM.


2014 ◽  
Vol 134 (5) ◽  
pp. 960-968 ◽  
Author(s):  
Anisa Yalom ◽  
Akishige Hokugo ◽  
Sarah Sorice ◽  
Andrew Li ◽  
Luis A. Segovia Aguilar ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3691-3691 ◽  
Author(s):  
Fanyi Meng ◽  
Xiaodong Li ◽  
Bingjie Ding ◽  
Kaikai Huang ◽  
Qiuhua Zhu ◽  
...  

Abstract PURPOSE: Total body irradiation (TBI) combined with chemotherapy is currently the most effective procedure of traditional preparative myeloablative regimen. However, resistance to chemotherapy in refractory acute myeloid leukemia (AML) is associated with short-time recurrence after Allo-HSCT. To investigate the mechanism of Hedgehog signaling pathway resulting in resistance, we used primary AML cells originated in refractory patients and 3 cell lines including HL60, HL60/ADR (a adriamycin-resistant cells), and HL60/RX (a radiation-resistant cell line established from HL60) as cellular modes to examine the expression of p-IGF-1R, IRS-1, p-Akt, Gli-1, MRP1, Bcl-2, and explored the safety and efficacy of NVP-LDE225 (an inhibitor of Hedgehog pathway) for enhancing the sensitivity to treatment in refractory leukemia in vitro and in vivo. Methods: The expression of Hedgehog signaling pathway was measured in 3 leukemia cell lines, and primary leukemia cells originated in refractory AML patients and non-refractory AML patients using western blot technique. In in vitro experiments, HL60/ADR cells and HL60/RX cells were treated with DMSO (control) or NVP-LDE225 for 48 h, and then assigned in six groups respectively: (a) Control, (b) ADM alone, (c) Radiation alone (d) NVP-LDE225 alone, (e) NVP-LDE225+ADM, (f) NVP-LDE225+Radiation. Flow cytometry, MTT assay and Western-Blot were performed separately to detect apoptosis, adriamycin uptake rate, proliferation inhibit rate and the expression of MRP1, p-IGF-1R, IRS-1, p-Akt, Gli-1, and Bcl-2. Furthermore, based on the results in vitro, the serial tumor volumes, general condition of the mice, complete blood counts, multiple organs injury, and the expression levels of hedgehog signaling pathway were used to detect the antitumor efficacy and toxicity of NVP-LDE225 in HL60/ADR and HL/RX xenograft model. Results: Our result showed that, compared with leukemia cells in non-refractory AML patients and HL60 cells, the expression of hedgehog signaling pathway protein was significantly elevated in refractory AML, HL60/ADR and HL60/RX cells(P<0.01). In addition, we also observed that NVP-LDE225 (10µM) could reverse ADM, DNR, HHT, and Ara-c resistance in HL60/ADR cells. Combining ADM with NVP-LDE225 (20µM) could markedly increase apoptosis and ADM positive rate of intracellular fluorescence detection than other groups (P<0.05). Moreover, combination of NVP-LDE225 with radiation could significantly increase radiation-induced apoptosis and exhibit higher expression of phosphorylation of histone H2AX and BAK than any other single treatment groups both in HL60/RX and HL60/ADR cells(P<0.05). In vivo, both in HL60/RX and HL60/ADR mice model, combination of NVP-LDE225 simultaneously and post 2 days or 5 days with ADM or radiation all presented significantly antitumor effect and high survival rate compared with the control or single agent mice (P<0.01), but there were no significant differences between the three combined treatment groups. Within the combination- and ADM-treated groups, nadir of the white blood cell and platelet counts were reached in day 8 with a gradual recovery starting at day 11. Finally, decrease in IRS-1, Gli-1, p-AKT, and NF-kb expressions were observed after treating with NVP-LDE225 in vitro and in tumor tissue. None of the pathological lesion in the heart, liver, kidney, brain, and lung was observed among all groups. Conclusion: The findings from this study demonstrated that Gli-1/p-Akt/NF-kb pathway play a key role for resistance to both drug and irradiation, and suggested that the combination of hedgehog pathway inhibitor (NVP-LDE225) with chemotherapy or radiotherapy could significantly enhance the antitumor activity via overcoming chemoresistance or radioresistance. The myelosuppression and toxicity could be well tolerated Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Lin Zhang ◽  
Feng-yang Chen ◽  
Shi-fang Xu ◽  
Yi-ping Ye ◽  
Xiao-yu Li

Two novel steroidal aglycones, together with four known ones, were isolated from the hydrolysis extract of the CHCl3 soluble extract of the stems of Marsdenia tenacissima. Their structures were determined on the basis of chemical evidence and extensive spectroscopic methods, including 1D and 2D NMR spectroscopy. These compounds displayed inhibition of the Hedgehog signaling pathway in vitro.


2020 ◽  
Author(s):  
Yansong Ren ◽  
Ruxia Deng ◽  
Rui Cai ◽  
Xiansheng Lu ◽  
Yuejun Luo ◽  
...  

Abstract Tumor suppressor candidate 3 (TUSC3) is a coding gene responsible for N-glycosylation of many critical proteins. TUSC3 gene plays an oncogenic role in colorectal cancer (CRC), however, the role of TUSC3 in drug resistance of CRC is still unclear. The aim of this study is to investigate the biological function and molecular mechanism of TUSC3 in CRC drug resistance. The expression of TUSC3 in CRC is positively correlated to tumor stage in 90 paired clinical samples, and negatively associated with overall survival and disease-free survival of CRC patients. In vitro, TUSC3 promotes the formation of stemness and induces the drug resistance to 5-fluorouracil and cis-dichlorodiammineplatinum(II) in CRC cells. The tissue microarray assay and bioinformatic analysis indicate that TUSC3 may promote the expression of CD133 and ABCC1 via Hedgehog signaling pathway. Treatment of Hedgehog signaling pathway agonist or inhibitor in TUSC3-silenced or TUSC3-overexpressed cells reverse the effects of TUSC3 in cellular stemness phenotype and drug resistance. Meanwhile, coimmunoprecipitation and immunofluorescence assays indicate a tight relationship between TUSC3 and SMO protein. Our data suggest that TUSC3 promotes the formation of cellular stemness and induces drug resistance via Hedgehog signaling pathway in CRC.


2019 ◽  
Vol 77 (20) ◽  
pp. 4093-4115 ◽  
Author(s):  
Uma Thanigai Arasu ◽  
Ashik Jawahar Deen ◽  
Sanna Pasonen-Seppänen ◽  
Sami Heikkinen ◽  
Maciej Lalowski ◽  
...  

AbstractIntercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.


Sign in / Sign up

Export Citation Format

Share Document