Inverse-Based Current Harmonic Controller for Multiphase PMSMs

2016 ◽  
Vol 11 (4) ◽  
pp. 359 ◽  
Author(s):  
Jussi Karttunen ◽  
Samuli Kallio ◽  
Pasi Peltoniemi ◽  
Jari Honkanen ◽  
Pertti Silventoinen
Keyword(s):  
2020 ◽  
pp. 107754632098246
Author(s):  
Peiling Cui ◽  
Fanjun Zheng ◽  
Xinxiu Zhou ◽  
Wensi Li

Permanent magnet synchronous motor always suffers from air gap field distortion and inverter nonlinearity, which lead to the harmonic components in motor currents. A resonant controller is a remarkable control method to eliminate periodic disturbance, whereas the conventional resonant controller is limited by narrow bandwidth and phase lag. This article presents a novel resonant controller with a precise phase compensation method for a permanent magnet synchronous motor to suppress the current harmonics. Based on the analysis of the current harmonic characteristics, the proposed resonant controller for rejecting a set of selected current harmonic components is plugged in the current loop, and it is parallel to the traditional proportional–integral controller. Furthermore, the stability analysis of the proposed resonant controller is investigated, and the parameters are tuned to get a satisfactory performance. Compared with the conventional resonant controller, the proposed resonant controller can achieve good steady-state performance, dynamic performance, and frequency adaptivity performance, simultaneously. Finally, the experimental results demonstrate the effectiveness of the proposed suppression scheme.


Author(s):  
Muhammad Naveed Iqbal ◽  
Lauri Kütt ◽  
Bilal Asad ◽  
Noman Shabbir ◽  
Iftikhar Rasheed

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1583
Author(s):  
Wei-Tse Kao ◽  
Jonq-Chin Hwang ◽  
Jia-En Liu

This study aimed to develop a three-phase permanent-magnet synchronous motor drive system with improvement in current harmonics. Considering the harmonic components in the induced electromotive force of a permanent-magnet synchronous motor, the offline response of the induced electromotive force (EMF) was measured for fast Fourier analysis, the main harmonic components were obtained, and the voltage required to reduce the current harmonic components in the corresponding direct (d-axis) and quadrature (q-axis) axes was calculated. In the closed-loop control of the direct axis and quadrature axis current in the rotor reference frame, the compensation amount of the induced EMF with harmonic components was added. Compared with the online adjustment of current harmonic injection, this simplifies the control strategy. The drive system used a 32-bit digital signal processor (DSP) TMS320F28069 as the control core, the control strategies were implemented in software, and a resolver with a resolver-to-digital converter (RDC) was used for the feedback of angular position and speed. The actual measurement results of the current harmonic improvement control show that the total harmonic distortion of the three-phase current was reduced from 5.30% to 2.31%, and the electromagnetic torque ripple was reduced from 15.28% to 5.98%. The actual measurement results verify the feasibility of this method.


2014 ◽  
Vol 29 (3) ◽  
pp. 673-680 ◽  
Author(s):  
Wenyi Liang ◽  
Jianfeng Wang ◽  
Patrick Chi-Kwong Luk ◽  
Weizhong Fang ◽  
Weizhong Fei

2011 ◽  
Vol 58-60 ◽  
pp. 2517-2521
Author(s):  
Qing Xin Zhang ◽  
Hai Bin Li ◽  
Jin Li

Many methods have been used to detect the motor speed. All of these methods are based on the parameter equation of motor and the detection results are influenced by parameters of induction motor more or less. The research of Speed Measurement method without of Motor parameters effect is very significant. Based on the harmonic generated in the air gap magnetic field by the stator core on the alveolar surface, directly by the analysis and testing of stator current harmonic, the rotor speed is detected which is proportional to the speed of frequency components. Experiment results show that this method is good, and the accuracy achieve a desired effect in real time.


Sign in / Sign up

Export Citation Format

Share Document