general velocity
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Yi Lu ◽  
Zefeng Chang ◽  
Nijia Ye

When a heavy object is cooperatively grasped to move by several fingers of the robot hybrid hand, the inertial properties and the mass distribution of the object must influence largely on the operation precision, grasping stability, and the safety of both the hybrid hand and the object. Hence, it is an important and significant issue to establish and analyze the dynamics model of the moving-object cooperatively grasped by the hybrid hand in order to ensure the safety and grasping stability of the hybrid hand and the object. However, this research has not been conducted. In this paper, a dynamics model of the moving-object grasped by the hybrid hand is established, and its dynamics is studied and analyzed. First, a three-dimensional model of a hybrid hand formed by a novel parallel manipulator and three fingers is designed for cooperatively grasping object. Second, the kinematic formulas for solving the Jacobian matrices, the Hessian matrices, the general velocity/acceleration of the moving platform, and four active limbs of the parallel manipulator are derived. Third, the composite Jacobian matrix and the composite Hessian matrix of the hybrid hand are derived, and the general velocity/acceleration of the moving-object grasped by the hybrid hand is derived. Fourth, dynamics model of the hybrid hand is established, the formulas for solving the dynamic actuation forces of the three fingers and the dynamic actuation forces/torque and constrained forces of the parallel manipulator are derived. Finally, the theoretical solutions of the dynamics model of the moving-object grasped by the hybrid hand are verified by its simulation mechanism.


2021 ◽  
Author(s):  
Dominik Fahrner ◽  
James Lea ◽  
Stephen Brough ◽  
Jakob Abermann

<p>Greenland’s tidewater glaciers (TWG) have been retreating since the mid-1990s, contributing to mass loss from the Greenland Ice Sheet and sea level rise. Satellite imagery has been widely used to investigate TWG behaviour and determine the response of TWGs to climate. However, multi-day revisit times make it difficult to determine short-term processes such as calving and shorter-term velocity changes that may condition this. </p><p>Here we present velocity, calving and proglacial plume data derived from hourly time-lapse images of Narsap Sermia, SW Greenland for the period July 2017 to June 2020 (n=13,513). Raw images were orthorectified using the <em>Image GeoRectification And Feature Tracking toolbox</em> (ImGRAFT; Messerli & Grinsted, 2015) using a smoothed ArcticDEM tile from 2016 (RMSE=44.4px). TWG flow velocities were determined using ImGRAFT feature tracking, with post-processing adjusting for varying time intervals between image acquisitions (if >1 hour) and removing outliers (>x2 mean). The high temporal resolution of the imagery also enabled the manual mapping of proglacial plume sizes from the orthorectified images and the recording of individual calving events by visually comparing images.</p><p>Results show a total retreat of approximately 700 m, with a general velocity increase from ~15 m/d to ~20 m/d over the investigated time period and highly variable hourly velocities (±12m/d). The number of calving events and plume sizes remain relatively stable from year to year throughout the observation period. However, later in the record plumes appear earlier in the year and the size of calved icebergs increases significantly, which suggests a change in calving behaviour. </p>


Author(s):  
Danica Janicijevic ◽  
Ivan Jukic ◽  
Jonathon Weakley ◽  
Amador García-Ramos

Purpose: To compare the accuracy of nine 1-repetition maximum (1RM) prediction methods during the paused and touch-and-go bench press exercises performed in a Smith machine. Method: A total of 86 men performed 2 identical sessions (incremental loading test until reaching the 1RM followed by a set to failure) in a randomized order during the paused and touch-and-go bench press exercises. Individualized load–velocity relationships were modeled by linear and polynomial regression models considering 4 loads (45%–60%–75%–90% of 1RM) (multiple-point methods) and considering only 2 loads (45%–90% of 1RM) by a linear regression (2-point method). Three minimal velocity thresholds were used: the general velocity of 0.17 m·s−1 (general velocity of the 1RM [V1RM]), the velocity obtained when lifting the 1RM load (individual V1RM), and the velocity obtained during the last repetition of a set to failure. Results: The 1RM prediction methods were generally valid (range: r = .96–.99, standard error of the estimate = 2.8–4.9 kg or 4.6%–8.0% of 1RM). The multiple-point linear method (2.79 [2.29] kg) was more precise than the multiple-point polynomial method (3.54 [3.31] kg; P = .013), but no significant differences were observed when compared with the 2-point method (3.09 [2.66] kg, P = .136). The velocity of the last repetition of a set to failure (3.47 [2.97] kg) was significantly less precise than the individual V1RM (2.91 [2.75] kg, P = .009) and general V1RM (3.00 [2.65] kg, P = .010). Conclusions: Linear regression models and a general minimal velocity threshold of 0.17 m·s−1 should be recommended to obtain a quick and precise estimation of the 1RM during the bench press exercise performed in a Smith machine.


2019 ◽  
Vol 26 (12) ◽  
pp. 122706 ◽  
Author(s):  
I. E. Ochs ◽  
C. Stollberg ◽  
E. Kroupp ◽  
Y. Maron ◽  
A. Fruchtman ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Lu ◽  
Zefeng Chang ◽  
Nijia Ye

Abstract A forward acceleration of the kinematic limbs for the redundant serial–parallel manipulators is studied. The relationships between the input velocity/acceleration and the output general velocity/acceleration of the kinematic limbs are discovered. The forward kinematic Jacobian matrices and the forward kinematic Hessian matrices are derived. A unified forward acceleration of the kinematic limbs is established for solving the output general acceleration of the kinematic limbs by only giving the input general velocity/acceleration of every parallel manipulator. A novel 2(RPS + SPR + UPS + SPU) type serial–parallel manipulator is constructed, several formulas are derived for solving the full forward general acceleration of the kinematic limbs in the redundant serial–parallel manipulator based on the unified forward acceleration model. The theoretical solutions are proved to be correct by the simulation solution of the novel serial–parallel manipulator.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. Izadi ◽  
M. Z. A. Ab Kadir ◽  
M. Hajikhani

Numerical field expressions are proposed to evaluate the electromagnetic fields due to the lightning channel with variable values of return stroke velocity. Previous calculation methods generally use an average value for the return stroke velocity along a lightning channel. The proposed method can support different velocity profiles along a lightning channel in addition to the widely used channel-base current functions and also the general form of the engineering current models directly in the time domain without the need to apply any extra conversions. Moreover, a sample of the measured lightning current is used to validate the proposed method while the velocity profile is simulated by the general velocity function. The simulated fields based on constant and variable values of velocity are compared to the corresponding measured fields. The results show that the simulated fields based on the proposed method are in good agreement with the corresponding measured fields.


Robotica ◽  
2014 ◽  
Vol 33 (08) ◽  
pp. 1718-1730
Author(s):  
Changchun Hua ◽  
Yinjuan Liu ◽  
Yana Yang

SUMMARYA new image-based controller is proposed for the robotic system with the joint velocity signals unavailable. The Immersion and Invariance (I&I) observer is applied to estimate the unknown velocity information. Compared with the general velocity observer, the I&I observer can estimate the unknown velocity exponentially. We consider the case that the exact camera parameters are not known. The corresponding adaptive controller is designed for the robot system and the stability is rigorously proven by using Lyapunov theorem. Finally, simulations are performed and the results show the effectiveness of the proposed control approach.


Sign in / Sign up

Export Citation Format

Share Document