A Highly Efficient Wideband Two-Dimensional Direction Estimation Method with L-Shaped Microphone Array

Author(s):  
Bandhit SUKSIRI ◽  
Masahiro FUKUMOTO
2021 ◽  
pp. 110023
Author(s):  
Youqiang Huang ◽  
Yingjie Zhao ◽  
Yuan Liu ◽  
Beibei Xu ◽  
Shiqing Xu ◽  
...  

2021 ◽  
Author(s):  
R Rajalakshmi ◽  
Remya K. P. ◽  
Viswanathan Chinnuswamy ◽  
Nagamony Ponpandian

The morphology of a nanoparticle strongly controls the path ofelectronic interaction, which directly correlates to the physicochemical properties and also the electrochemical comportment. Conjoining it with a two-dimensional (2D) material...


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Haiwen Li ◽  
Nae Zheng ◽  
Xiyu Song ◽  
Yinghua Tian

The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA) and direction of arrival (DOA) parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC) algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM) system, and the Cramer-Rao bound (CRB) is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT) algorithm and 2D matrix pencil (MP) algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.


2013 ◽  
Vol 846-847 ◽  
pp. 1106-1110
Author(s):  
Guo Qing Yang ◽  
Rong Yi Cui

Taking the wavelet decomposed approximate image as the main research object, a direction estimation method for moving object was proposed in this paper. Firstly, the approximate image for the frame of the video was obtained via wavelet decomposition; and furthermore, the motion estimation on the approximate image was achieved to obtain the motion vectors. Finally, the motion vectors were described as polar coordinate form to compute the number of motion vectors in specified angles and the information entropy of the motion directions. The experiment results show that the proposed method can remove the effect of noise and the results of direction estimation are consistent with the actual motion directions.


Sign in / Sign up

Export Citation Format

Share Document