scholarly journals A Novel High-Performance Heuristic Algorithm with Application to Physical Design Optimization

Author(s):  
Yiqiang SHENG ◽  
Atsushi TAKAHASHI
2012 ◽  
Vol 16 (6) ◽  
pp. 974-979 ◽  
Author(s):  
Joo-Ha Lee ◽  
Young-Soo Yoon ◽  
Joong-Hoon Kim

2000 ◽  
Author(s):  
D.-J. Yao ◽  
C.-J. Kim ◽  
G. Chen

Abstract Thin-film thermoelectric devices have potentially higher efficiency than bulk ones due to quantum and classical size effects of electrons and phonons. In this paper, we discuss the design of thin-film thermoelectric microcoolers for achieving high performance. The devices considered are membrane structures based on electron transport along the film plane. A model is developed to include the effects of heat loss and leg shape. Design optimization is performed based on the modeling results.


2013 ◽  
Vol 10 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Aparna Aravelli ◽  
Singiresu S. Rao ◽  
Hari K. Adluru

Increased heat generation in semiconductor devices for demanding applications leads to the investigation of highly efficient cooling solutions. Effective options for thermal management include passing of cooling liquid through the microchannel heat sink and using highly conductive materials. In the author's previous work, experimental and computational analyses were performed on LTCC substrates using embedded silver vias and silver columns forming microchannels. This novel technique of embedding silver vias along with forced convection using a coolant resulted in higher heat transfer rates. The present work investigates the design optimization of this cooling system (microheat exchanger) using systems optimization theory. A new multiobjective optimization problem was formulated for the heat transfer in the LTCC model using the log mean temperature difference (LMTD) method of heat exchangers. The goal is to maximize the total heat transferred and to minimize the coolant pumping power. Structural and thermal design variables are considered to meet the manufacturability and energy requirements. Pressure loss and volume of the silver metal are used as constraints. A hybrid optimization technique using sequential quadratic programming (SQP) and branch and bound method of integer programming has been developed to solve the microheat exchanger problem. The optimal design is presented and sensitivity analysis results are discussed.


Author(s):  
VR Sanal Kumar ◽  
Vigneshwaran Sankar ◽  
Nichith Chandrasekaran ◽  
Sulthan Ariff Rahman M ◽  
Roshan Vignesh Baskaran

VLSI Design ◽  
1998 ◽  
Vol 7 (1) ◽  
pp. 15-30
Author(s):  
Gustavo E. Téllez ◽  
Majid Sarrafzadeh

Given a set of terminals on the plane N={s,ν1,…,νn}, with a source terminal s, a Rectilinear Distance-Preserving Tree (RDPT) T(V, E) is defined as a tree rooted at s, connecting all terminals in N. An RDPT has the property that the length of every source to sink path is equal to the rectilinear distance between that source and sink. A Min- Cost Rectilinear Distance-Preserving Tree (MRDPT) minimizes the total wire length while maintaining minimal source to sink linear delay, making it suitable for high performance interconnect applications.This paper studies problems in the construction of RDPTs, including the following contributions. A new exact algorithm for a restricted version of the problem in one quadrant with O(n2) time complexity is proposed. A novel heuristic algorithm, which uses optimally solvable sub-problems, is proposed for the problem in a single quadrant. The average and worst-case time complexity for the proposed heuristic algorithm are O(n3/2) and O(n3), respectively. A 2-approximation of the quadrant merging problem is proposed. The proposed algorithm has time complexity O(α2T(n)+α3) for any constant α > 1, where T(n) is the time complexity of the solution of the RDPT problem on one quadrant. This result improves over the best previous quadrant merging solution which has O(n2T(n)+n3) time complexity.We test our algorithms on randomly uniform point sets and compare our heuristic RDPT construction against a Minimum Cost Rectilinear Steiner (MRST) tree approximation algorithm. Our results show that RDPTs are competitive with Steiner trees in total wire-length when the number of terminals is less than 32. This result makes RDPTs suitable for VLSI routing applications. We also compare our algorithm to the Rao-Shor RDPT approximation algorithm obtaining improvements of up to 10% in total wirelength. These comparisons show that the algorithms proposed herein produce promising results.


Sign in / Sign up

Export Citation Format

Share Document