scholarly journals Mini-cutting rooting and plantlet growth in Erythrina crista-galli L.

Revista CERES ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 135-142
Author(s):  
Dilson Antônio Bisognin ◽  
Gabriel de Araujo Lopes ◽  
Angélica Costa Malheiros ◽  
Renato Trevisan ◽  
Kelen Haygert Lencina
Keyword(s):  
Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 562 ◽  
Author(s):  
Mercedes Verdeguer ◽  
Luis Guillermo Castañeda ◽  
Natalia Torres-Pagan ◽  
Juan Antonio Llorens-Molina ◽  
Alessandra Carrubba

In the search of sustainable and environmentally friendly methods for weed control, there is increasing interest in essential oils (EOs) as an approach to reduce synthetic herbicide use. The phytotoxicity of Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus EOs against the noxious weed Erigeron bonariensis were evaluated in pre- and post-emergence assays in greenhouse conditions. The EOs were applied at 2, 4, and 8 µL/mL, with Fitoil used as emulsifier. In post-emergence, two ways of application were tested, irrigation and spraying. Several germination parameters (germination %, mean germination time, and synchrony of the germination process) were evaluated in pre-emergence tests, and the phytotoxicity level was assessed in post-emergence. In pre-emergence, all EOs significantly reduced seed germination as compared to the controls, ranking: T. capitata > E. camaldulensis > S. chamaecyparissus > M. piperita. The effectiveness of all EOs varied with the tested dose, always following the rank 2 μL < 4 μL < 8 μL, with T. capitata EO showing full effectiveness even at the lowest dose. In post-emergence, T. capitata was the most effective EO, inducing a rather complete inhibition of plantlet growth at the highest two doses. These EOs demonstrated to have good potential for the formulation of natural herbicides.


2006 ◽  
Vol 49 (4) ◽  
pp. 383-388 ◽  
Author(s):  
Nafiz Çeliktaş ◽  
Ersin Can ◽  
Ruştu Hatipoğlu ◽  
Suleyman Avci

2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Masna Maya SINTA ◽  
Imron RIYADI ◽  
. UMARYONO

AbstractMicroenvironment inside the culture vessel such astemperature, light intensity, relative humidity, and aerationaffect growth and development of plantlets. This experimentwas conducted to determine the effect of different culturevessel closures on microenvironmental conditions inside thevessel and on growth of plantlets of oil palm. Shoots of oilpalm derived from somatic embryos were cultured on DFmedium for eight weeks in transparent culture bottlescovered with five different vessel closures e.i. screw cap withplastic wrap, screw cap, plastic wrap, aluminum foil, andautoclavable plastic. The culture vessels were placed in theculture room with light intensity 20 µmol/m 2 /sec for 12 hoursphotoperiod, at room temperature 26°C. Parametersobserved on plantlet growth were shoot height, biomass freshweight, leaf number, and leaf color grade, while onmicroenvironment were temperature and light intensity. Atthe end of experiment, the volume and fresh weight of theremaining medium were measured to determine evaporationrate of each treatment. Results show that the use of differentculture vessel closures affected the microenvironment insidethe vessel, the volume of the remaining medium, and thegrowth of the plantlets. The closure increased thetemperature by 1.6 – 2.6°C and decreased the light intensityby 1.7 – 8.7 µmol/m 2 /sec inside the culture vessels dependson the culture vessel closures. Culture vessels with aluminumfoil closure had the lowest temperature (28.9°C) and thelowest light intensity (10.8 µmol/m 2 /sec) gave the best resultin the growth of the plantlets. Better plantlets growth wasalso observed in the culture vessel with autoclavable plasticclosure that less expensive, therefore it can be used as analternative vessel closure for the growth of oil palm plantlets.AbstrakLingkungan mikro di dalam botol kultur seperti suhu,intensitas cahaya, kelembaban nisbi dan aerasi mem-pengaruhi pertumbuhan dan perkembangan planlet.Penelitian ini dilakukan untuk mengetahui pengaruhpenggunaan penutup botol kultur yang berbeda terhadapkondisi lingkungan mikro di dalam botol kultur danpertumbuhan planlet kelapa sawit. Planlet kelapa sawit asalembrio somatik dikulturkan dalam botol kultur bening berisimedium DF selama delapan minggu dan ditutup mengguna-kan lima jenis penutup botol yang berbeda yaitu tutup ulirdengan plastik wrap, tutup ulir, plastik wrap, aluminium foildan plastik tahan diautoklaf. Kultur diletakkan dalam ruangkultur, di bawah lampu TL dengan intensitas cahaya20 µmol/m 2 /detik dan suhu ruang 26 o C. Parameterpertumbuhan planlet yang diamati adalah tinggi planlet,bobot basah, jumlah daun dan kelas warna daun, sedangkanlingkungan mikro adalah suhu dan intensitas cahaya. Padaakhir eksperimen, volume dan bobot basah medium yangtersisa diukur untuk mengetahui tingkat penguapan padasetiap perlakuan. Hasil penelitian menunjukkan bahwapenggunaan penutup botol yang berbeda berpengaruhterhadap lingkungan mikro, volume medium tersisa dalambotol kultur dan pertumbuhan planlet. Penutup botolmeningkatkan suhu 1,6 – 2,6 o C dan menurunkan intensitascahaya 1,7 – 8,7 µmol/m 2 /detik di dalam botol tergantungpada jenis penutup botol yang digunakan. Botol kulturdengan penutup berbahan aluminium foil mempunyaiintensitas cahaya terendah (10,8 µmol/m 2 /detik) dan suhuterendah (28,9 o C) memberikan hasil terbaik pada pembesaranplanlet kelapa sawit. Pertumbuhan planlet yang baik jugaterdapat pada botol kultur dengan penutup plastik tahandiautoklaf yang lebih murah, sehingga penutup ini dapatdigunakan sebagai pilihan untuk pembesaran planlet kelapasawit.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Masna Maya SINTA ◽  
Imron RIYADI ◽  
. UMARYONO

AbstractMicroenvironment inside the culture vessel such astemperature, light intensity, relative humidity, and aerationaffect growth and development of plantlets. This experimentwas conducted to determine the effect of different culturevessel closures on microenvironmental conditions inside thevessel and on growth of plantlets of oil palm. Shoots of oilpalm derived from somatic embryos were cultured on DFmedium for eight weeks in transparent culture bottlescovered with five different vessel closures e.i. screw cap withplastic wrap, screw cap, plastic wrap, aluminum foil, andautoclavable plastic. The culture vessels were placed in theculture room with light intensity 20 µmol/m 2 /sec for 12 hoursphotoperiod, at room temperature 26°C. Parametersobserved on plantlet growth were shoot height, biomass freshweight, leaf number, and leaf color grade, while onmicroenvironment were temperature and light intensity. Atthe end of experiment, the volume and fresh weight of theremaining medium were measured to determine evaporationrate of each treatment. Results show that the use of differentculture vessel closures affected the microenvironment insidethe vessel, the volume of the remaining medium, and thegrowth of the plantlets. The closure increased thetemperature by 1.6 – 2.6°C and decreased the light intensityby 1.7 – 8.7 µmol/m 2 /sec inside the culture vessels dependson the culture vessel closures. Culture vessels with aluminumfoil closure had the lowest temperature (28.9°C) and thelowest light intensity (10.8 µmol/m 2 /sec) gave the best resultin the growth of the plantlets. Better plantlets growth wasalso observed in the culture vessel with autoclavable plasticclosure that less expensive, therefore it can be used as analternative vessel closure for the growth of oil palm plantlets.AbstrakLingkungan mikro di dalam botol kultur seperti suhu,intensitas cahaya, kelembaban nisbi dan aerasi mem-pengaruhi pertumbuhan dan perkembangan planlet.Penelitian ini dilakukan untuk mengetahui pengaruhpenggunaan penutup botol kultur yang berbeda terhadapkondisi lingkungan mikro di dalam botol kultur danpertumbuhan planlet kelapa sawit. Planlet kelapa sawit asalembrio somatik dikulturkan dalam botol kultur bening berisimedium DF selama delapan minggu dan ditutup mengguna-kan lima jenis penutup botol yang berbeda yaitu tutup ulirdengan plastik wrap, tutup ulir, plastik wrap, aluminium foildan plastik tahan diautoklaf. Kultur diletakkan dalam ruangkultur, di bawah lampu TL dengan intensitas cahaya20 µmol/m 2 /detik dan suhu ruang 26 o C. Parameterpertumbuhan planlet yang diamati adalah tinggi planlet,bobot basah, jumlah daun dan kelas warna daun, sedangkanlingkungan mikro adalah suhu dan intensitas cahaya. Padaakhir eksperimen, volume dan bobot basah medium yangtersisa diukur untuk mengetahui tingkat penguapan padasetiap perlakuan. Hasil penelitian menunjukkan bahwapenggunaan penutup botol yang berbeda berpengaruhterhadap lingkungan mikro, volume medium tersisa dalambotol kultur dan pertumbuhan planlet. Penutup botolmeningkatkan suhu 1,6 – 2,6 o C dan menurunkan intensitascahaya 1,7 – 8,7 µmol/m 2 /detik di dalam botol tergantungpada jenis penutup botol yang digunakan. Botol kulturdengan penutup berbahan aluminium foil mempunyaiintensitas cahaya terendah (10,8 µmol/m 2 /detik) dan suhuterendah (28,9 o C) memberikan hasil terbaik pada pembesaranplanlet kelapa sawit. Pertumbuhan planlet yang baik jugaterdapat pada botol kultur dengan penutup plastik tahandiautoklaf yang lebih murah, sehingga penutup ini dapatdigunakan sebagai pilihan untuk pembesaran planlet kelapasawit.


2020 ◽  
Vol 12 (9) ◽  
pp. 3651
Author(s):  
Xiaofei Chen ◽  
Jianhua Tong ◽  
Yi Su ◽  
Langtao Xiao

Chromium is one of the major pollutants in water and soil. Thus, it is urgent to develop a new method for chromium removal from the environment. Phytoremediation is a promising approach for heavy metal pollution recovery. As a perennial giant grass with a fast growth rate, Pennisetum sinese has been widely used as livestock feed, mushroom culture medium and biomass energy raw material. Interestingly, we have found a high adsorption capacity of P. sinese for chromium. P. sinese was treated with different concentrations of chromium for 15 days. Results showed that P. sinese plantlets grew well under low concentrations (less than 500 μM) of chromium (VI). The plantlet growth was inhibited when treated with high concentrations of chromium (more than 1000 μM). Up to 150.99 and 979.03 mg·kg−1 DW of chromium accumulated in the aerial part and root, respectively, under a treatment of 2000 μM Cr. The bioaccumulation factor (BCF) of P. sinese varied from 10.87 to 17.56, and reached a maximum value at the concentration of 500 μM. The results indicated that P. sinese showed strong tolerance and high accumulation capability under Cr stress. Therefore, the chromium removal potential of P. sinese has a great application prospect in phytoremediation.


1993 ◽  
Vol 73 (4) ◽  
pp. 1105-1113 ◽  
Author(s):  
Ribo Deng ◽  
Danielle J. Donnelly

Micropropagated shoots of red raspberry (Rubus idaeus L. ’Comet’) were rooted on modified Murashige-Skoog medium lacking sucrose, in specially constructed plexiglass chambers, under ambient (340 ± 20 ppm) or enriched (1500 ± 50 ppm) CO2 and ambient (ca. 100%) or reduced (90 ± 5%) relative humidity. Cultured plantlets were evaluated for their survival, rooting and relative vigor, leaf and root number, stem and root length, total leaf area, total fresh and dry weight, gas exchange rate, and stomatal features, prior to transplantation to soil and at intervals for 6 wk ex vitro. In vitro CO2 enrichment promoted plantlet growth, rooting and both the survival and early growth of transplants. CO2 enrichment increased stomatal aperture of plantlet leaves but did not apparently increase water stress at transplantation. Reduced in vitro RH did not affect plantlet growth but decreased stomatal apertures and stomatal index on leaves of cultured plantlets and promoted both the survival and early growth of transplants. In vitro CO2 and RH levels did not affect the photosynthetic rate of either plantlets or transplants. Only the stomata on leaves of plantlets from the ambient CO2 and reduced RH treatment were functional. Normal stomatal function was not observed in persistent leaves of transplants from the other treatments, even 2 wk after transplantation. In vitro CO2 enrichment acted synergistically with RH reduction in improving growth of plantlets both in vitro and ex vitro. Hardened red raspberry plantlets obtained through CO2 enrichment and RH reduction survived direct transfer to ambient greenhouse conditions without the necessity for specialized ex vitro acclimatization treatment. Key words: Acclimatization, growth analysis, photosynthesis, Rubus idaeus L., stomata, tissue culture


2006 ◽  
Vol 36 (3) ◽  
pp. 761-767 ◽  
Author(s):  
Krassimir Naydenov ◽  
Francine Tremblay ◽  
Yves Bergeron ◽  
Venceslas Goudiaby

In the boreal forest, the beneficial effect of wildfire on germination substrates has often been linked to the adsorption by charcoal of phenolic compounds detrimental for seedling germination and growth. Our goal was to show that active charcoal has direct positive effects on germination and early growth of jack pine (Pinus banksiana Lamb.) plantlets, a species well adapted to fire. Four concentrations of active charcoal (0%, 50%, 100%, and 150% seed mass) along with two temperatures (26–27 °C and 18–20 °C) were tested in vitro, in Petri dishes, under constant moisture conditions. Results showed that adding active charcoal to the substrate had no significant effect on jack pine seed germination but inhibited plantlet growth at concentrations over 100%. Significant growth increase was observed only with 50% charcoal at the highest temperature (26–27 °C). Deformities were noted at the apex of radicles, particularly with low temperatures and high levels of active charcoal in the substrate.


Sign in / Sign up

Export Citation Format

Share Document