scholarly journals EFFECTS OF PROBIOTICS SUPPLEMENTATION ON SKIN WOUND HEALING IN DIABETIC RATS

Author(s):  
Letícia Fuganti CAMPOS ◽  
Eliane TAGLIARI ◽  
Thais Andrade Costa CASAGRANDE ◽  
Lúcia de NORONHA ◽  
Antônio Carlos L. CAMPOS ◽  
...  

ABSTRACT Background: Chronic wounds in patients with Diabetes Mellitus often become incurable due to prolonged and excessive production of inflammatory cytokines. The use of probiotics modifies the intestinal microbiota and modulates inflammatory reactions. Aim: To evaluate the influence of perioperative supplementation with probiotics in the cutaneous healing process in diabetic rats. Methods: Forty-six rats were divided into four groups (C3, P3, C10, P10) according to the treatment (P=probiotic or C=control, both orally administered) and day of euthanasia, 3rd or 10th postoperative days. All rats were induced to Diabetes Mellitus 72 h before starting the experiment with alloxan. Supplementation was initiated five days before the incision and maintained until euthanasia. Scalpel incision was guided by a 2x2 cm mold and the wounds were left to heal per second-intention. The wounds were digitally measured. Collagen densitometry was done with Picrosirius Red staining. Histological parameters were analyzed by staining by H&E. Results: The contraction of the wound was faster in the P10 group which resulted in a smaller scar area (p=0.011). There was an increase in type I collagen deposition from the 3rd to the 10th postoperative day in the probiotic groups (p=0.016), which did not occur in the control group (p=0.487). The histological analysis showed a better degree of healing in the P10 group (p=0.005), with fewer polymorphonuclear (p<0.001) and more neovessels (p=0.001). Conclusions: Perioperative supplementation of probiotics stimulates skin wound healing in diabetic rats, possibly due to attenuation of the inflammatory response and increased neovascularization and type I collagen deposition.

2008 ◽  
Vol 53 (No. 12) ◽  
pp. 652-659 ◽  
Author(s):  
P. Gal ◽  
Kilik ◽  
R ◽  
M. Mokry ◽  
B. Vidinsky ◽  
...  

The use of a simple and reproducible model is inevitable for objective statement of the effects of external factors on wound healing. Hence, present study was conducted to establish an excisional model of skin wound healing in corticosteroid treated, and streptozotocine induced diabetic rats as well as to standardized the semi-quantitative and quantitative evaluation of selected parameters. Round full thickness skin wounds were performed on the back of male Sprague-Dawley rats. Animals were sacrificed two, six, and fourteen days after surgery. Sections were stained with hematoxylin-eosin and van Gieson. Both semi-quantitative (wound reepithelization; presence of: inflammatory cells, fibroblasts, new wessels, and collagen) and quantitative methods (polymorphonuclear leucocytes/tissue macrophages ratio, percentage of re-epithelization, area of the granulation tissue) were used to evaluate the histological changes during wound healing. As compared to the control group the wound healing process of both experimental groups was decelerated. Interestingly, wound reepithelization and angiogenesis were significantly inhibited only in the steroid rats while epithelization was accelerated in diabetic rats. In conclusion, when compared to primary sutured wound healing it can be concluded that the excisional model is more appropriate for histological assessment of the effect of various factors on wound healing. In addition, administration of corticosteroids represents simple and inexpensive model of a complex skin wound healing impairment.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Mariáurea M. Sarandy ◽  
Rômulo D. Novaes ◽  
Antônio A. Xavier ◽  
Camilo E. Vital ◽  
João P. V. Leite ◽  
...  

The effect of topical application of ointment based on Strychnos pseudoquina hydroethanolic extract in the cutaneous wounds healing in diabetic rats was evaluated. Samples of S. pseudoquina were submitted to phytochemical prospection and in vitro antioxidant assay. Thirty Wistar rats were divided into 5 groups: Sal-wounds treated with 0.9% saline solution; VH-wounds treated with 0.6 g of lanolin cream (vehicle); SS-wounds treated with silver sulfadiazine cream (10 mg/g); ES5- and ES10-wounds treated with an ointment of S. pseudoquina extract, 5% and 10%, respectively. Fragments of wounds were removed for histological and biochemical analysis every 7 days during 21 days. ES showed equivalent levels per gram of extract of total phenols and flavonoids equal to 122.04 mg for TAE and 0.60 mg for RE. The chlorogenic acid was one of the major constituents. S. pseudoquina extract presented high antioxidant potential in vitro. ES5 and ES10 showed higher wound healing rate and higher amount of cells, blood vessels, and type III and I collagen. The oxidative stress markers were lower in the ES5 and ES10 groups, while the antioxidants enzymes levels were higher. Ointment based on S. pseudoquina extract promotes a fast and efficient cutaneous repair in diabetic rats.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 457
Author(s):  
Andreu Blanquer ◽  
Jana Musilkova ◽  
Elena Filova ◽  
Johanka Taborska ◽  
Eduard Brynda ◽  
...  

Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1219
Author(s):  
Luca Melotti ◽  
Tiziana Martinello ◽  
Anna Perazzi ◽  
Ilaria Iacopetti ◽  
Cinzia Ferrario ◽  
...  

Skin wound healing is a complex and dynamic process that aims to restore lesioned tissues. Collagen-based skin substitutes are a promising treatment to promote wound healing by mimicking the native skin structure. Recently, collagen from marine organisms has gained interest as a source for producing biomaterials for skin regenerative strategies. This preliminary study aimed to describe the application of a collagen-based skin-like scaffold (CBSS), manufactured with collagen extracted from sea urchin food waste, to treat experimental skin wounds in a large animal. The wound-healing process was assessed over different time points by the means of clinical, histopathological, and molecular analysis. The CBSS treatment improved wound re-epithelialization along with cell proliferation, gene expression of growth factors (VEGF-A), and development of skin adnexa throughout the healing process. Furthermore, it regulated the gene expression of collagen type I and III, thus enhancing the maturation of the granulation tissue into a mature dermis without any signs of scarring as observed in untreated wounds. The observed results (reduced inflammation, better re-epithelialization, proper development of mature dermis and skin adnexa) suggest that sea urchin-derived CBSS is a promising biomaterial for skin wound healing in a “blue biotechnologies” perspective for animals of Veterinary interest.


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0179071 ◽  
Author(s):  
Hosana G. Rodrigues ◽  
Marco A. R. Vinolo ◽  
Fabio T. Sato ◽  
Juliana Magdalon ◽  
Carolina M. C. Kuhl ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Pengcheng Xu ◽  
Yaguang Wu ◽  
Lina Zhou ◽  
Zengjun Yang ◽  
Xiaorong Zhang ◽  
...  

Abstract Background Autologous platelet-rich plasma (PRP) has been suggested to be effective for wound healing. However, evidence for its use in patients with acute and chronic wounds remains insufficient. The aims of this study were to comprehensively examine the effectiveness, synergy and possible mechanism of PRP-mediated improvement of acute skin wound repair. Methods Full-thickness wounds were made on the back of C57/BL6 mice. PRP or saline solution as a control was administered to the wound area. Wound healing rate, local inflammation, angiogenesis, re-epithelialization and collagen deposition were measured at days 3, 5, 7 and 14 after skin injury. The biological character of epidermal stem cells (ESCs), which reflect the potential for re-epithelialization, was further evaluated in vitro and in vivo. Results PRP strongly improved skin wound healing, which was associated with regulation of local inflammation, enhancement of angiogenesis and re-epithelialization. PRP treatment significantly reduced the production of inflammatory cytokines interleukin-17A and interleukin-1β. An increase in the local vessel intensity and enhancement of re-epithelialization were also observed in animals with PRP administration and were associated with enhanced secretion of growth factors such as vascular endothelial growth factor and insulin-like growth factor-1. Moreover, PRP treatment ameliorated the survival and activated the migration and proliferation of primary cultured ESCs, and these effects were accompanied by the differentiation of ESCs into adult cells following the changes of CD49f and keratin 10 and keratin 14. Conclusion PRP improved skin wound healing by modulating inflammation and increasing angiogenesis and re-epithelialization. However, the underlying regulatory mechanism needs to be investigated in the future. Our data provide a preliminary theoretical foundation for the clinical administration of PRP in wound healing and skin regeneration.


2011 ◽  
Vol 93 (2) ◽  
pp. 228-234 ◽  
Author(s):  
Mohsen Khosravi Maharlooei ◽  
Mansooreh Bagheri ◽  
Zhabiz Solhjou ◽  
Behnam Moein Jahromi ◽  
Majid Akrami ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0165115 ◽  
Author(s):  
Hosana G. Rodrigues ◽  
Marco A. R. Vinolo ◽  
Fabio T. Sato ◽  
Juliana Magdalon ◽  
Carolina M. C. Kuhl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document