scholarly journals Reference evapotranspiration based on temperature in Minas Gerais state, Brazil

2019 ◽  
Vol 43 ◽  
Author(s):  
Marcus André Braido Pinheiro ◽  
Aline Lílian Marques Oliveira ◽  
João Carlos Ferreira Borges Júnior ◽  
Evandro Chaves de Oliveira ◽  
Luiz Gonsaga de Carvalho

ABSTRACT In the last decades, the areas of irrigated crops in the state of Minas Gerais have grown considerably, contributing to increase agricultural production in the country. Among the techniques of irrigation management, the determination of the water consumption by the plants is based on the reference evapotranspiration (ET0), the objective of this work was to evaluate and calibrate the Hargreaves-Samani (HS) method and a Proposed Method (MP) against the standard Penman-Monteith-FAO method (PM-FAO) for the state of Minas Gerais. For that, data from 52 conventional meteorological stations of the National Institute of Meteorology (INMET) were used. ET0 was estimated by the methods cited including the Hargreaves-Samani calibrated method (HScal) based on the mean absolute error (MAE). The analysis of the methods was carried out using the following statistical indicators: root mean square error (RMSE), systematic root mean square error (RMSEs), unsystematic root mean square error (RMSEun), the proportions of systematic and unsystematic mean square error, Willmott’s concordance index (d), confidence index (C) and Pearson correlation coefficient (r). It was verified that after the calibration, the HScal method obtained a superior performance to the original HS method in all the studied stations. It was also observed a superior MP performance with respect to the HScal method, in all stations studied.


2018 ◽  
Vol 53 (9) ◽  
pp. 1003-1010 ◽  
Author(s):  
Bruno César Gurski ◽  
Daniela Jerszurki ◽  
Jorge Luiz Moretti de Souza

Abstract: The objective of this work was to define the best alternative methods for estimating the reference evapotranspiration (ETo) in the main climatic types (Cfa and Cfb) of the state of Paraná, Brazil. The methods tested were Budyko, Camargo, Hargreaves-Samani, Linacre, and Thornthwaite, which were compared to the ETo calculated with the Penman-Monteith ASCE (EToPM) method, between 1986 and 2015, in eight meteorological stations. The performance of the alternative methods was obtained from the coefficient of determination (R2), index “d” of agreement, index “c” of performance, and root mean square error (RMSE). The Hargreaves-Samani method has a better performance in estimating the ETo for the main climatic types in the state of Paraná. The Camargo method allows smaller errors between the standard values of ETo, obtained with the Penman-Monteith method, and the estimated values. The methods of Thornthwaite, Linacre, and Budyko are not adequate to estimate the ETo in any climatic type of the state of Paraná, Brazil.



2019 ◽  
Vol 50 (3) ◽  
pp. 120-126
Author(s):  
Homayoon Ganji ◽  
Takamitsu Kajisa

Estimation of reference evapotranspiration (ET0) with the Food and Agricultural Organisation (FAO) Penman-Monteith model requires temperature, relative humidity, solar radiation, and wind speed data. The lack of availability of the complete data set at some meteorological stations is a severe restriction for the application of this model. To overcome this problem, ET0 can be calculated using alternative data, which can be obtained via procedures proposed in FAO paper No.56. To confirm the validity of reference evapotranspiration calculated using alternative data (ET0(Alt)), the root mean square error (RMSE) needs to be estimated; lower values of RMSE indicate better validity. However, RMSE does not explain the mechanism of error formation in a model equation; explaining the mechanism of error formation is useful for future model improvement. Furthermore, for calculating RMSE, ET0 calculations based on both complete and alternative data are necessary. An error propagation approach was introduced in this study both for estimating RMSE and for explaining the mechanism of error formation by using data from a 30-year period from 48 different locations in Japan. From the results, RMSE was confirmed to be proportional to the value produced by the error propagation approach (ΔET0). Therefore, the error propagation approach is applicable to estimating the RMSE of ET0(Alt) in the range of 12%. Furthermore, the error of ET0(Alt) is not only related to the variables’ uncertainty but also to the combination of the variables in the equation.



2021 ◽  
Author(s):  
Giulio Nils Caroletti ◽  
Tommaso Caloiero ◽  
Magnus Joelsson ◽  
Roberto Coscarelli

<p>Homogenization techniques and missing value reconstruction have grown in importance in climatology given their relevance in establishing coherent data records over which climate signals can be correctly attributed, discarding apparent changes depending on instrument inhomogeneities, e.g., change in instrumentation, location, time of measurement.</p><p>However, it is not generally possible to assess homogenized results directly, as true data values are not known. Thus, to validate homogenization techniques, artificially inhomogeneous datasets, also called benchmark datasets, are created from known homogeneous datasets. Results from their homogenization can be assessed and used to rank, evaluate and/or validate techniques used.</p><p>Considering temperature data, the aims of this work are: i) to determine which metrics (bias, absolute error, factor of exceedance, root mean squared error, and Pearson’s correlation coefficient) can be meaningfully used to validate the best-performing homogenization technique in a region; ii) to evaluate through a Pearson correlation analysis if homogenization techniques’ performance depends on physical features of a station (i.e., latitude, altitude and distance from the sea) or on the nature of the inhomogeneities (i.e., the number of break points and missing data).</p><p>With this aims, a southern Sweden temperature database with homogeneous, maximum and minimum temperature data from 100 ground stations over the period 1950-2005 has been used. Starting from these data, inhomogeneous datasets were created introducing up to 7 artificial breaks for each ground station and an average of 107 missing data. Then, 3 homogenization techniques were applied, ACMANT (Adapted Caussinus-Mestre Algorithm for Networks of Temperature series), and two versions of HOMER (HOMogenization software in R): the standard, automated setup mode (Standard-HOMER) and a manual setup developed and performed at the Swedish Meteorological and Hydrological Institute (SMHI-HOMER).</p><p>Results showed that root mean square error, absolute bias and factor of exceedance were the most useful metrics to evaluate improvements in the homogenized datasets: for instance, RMSE for both variables was reduced from an average of 0.71-0.89K (corrupted dataset) to 0.50-0.60K (Standard-HOMER), 0.51-0.61K (SMHI-HOMER) and 0.46-0.53K (ACMANT), respectively.</p><p>Globally, HOMER performed better regarding the factor of exceedance, while ACMANT outperformed it with regard to root mean square error and absolute error. Regardless of the technique used, the homogenization quality anti-correlated meaningfully to the number of breaks. Missing data did not seem to have an impact on HOMER, while it negatively affected ACMANT, because this method does not fill-in missing data in the same drastic way.</p><p>In general, the nature of the datasets had a more important role in yielding good homogenization results than associated physical parameters: only for minimum temperature, distance from the sea and altitude showed a weak but significant correlation with the factor of exceedance and the root mean square error.</p><p>This study has been performed within the INDECIS Project, that is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant 690462).</p>



Author(s):  
Kichul Jung ◽  
Taha B. M. J. Ouarda ◽  
Prashanth R. Marpu

AbstractRegional frequency analysis (RFA) is widely used in the design of hydraulic structures at locations where streamflow records are not available. RFA estimates depend on the precise delineation of homogenous regions for accurate information transfer. This study proposes new physiographical variables based on river network features and tests their potential to improve the accuracy of hydrological feature estimates. Information about river network types is used both in the definition of homogenous regions and in the estimation process. Data from 105 river basins in arid and semi-arid regions of the USA were used in our analysis. Artificial neural network ensemble models and canonical correlation analysis were used to produce flood quantile estimates, which were validated through tenfold cross- and jackknife validations. We conducted analysis for model performance based on statistical indices, such as the Nash–Sutcliffe Efficiency, root mean square error, relative root mean square error, mean absolute error, and relative mean bias. Among various combinations of variables, a model with 10 variables produced the best performance. Further, 49, 36, and 20 river networks in the 105 basins were classified as dendritic, pinnate, and trellis networks, respectively. The model with river network classification for the homogenous regions appeared to provide a superior performance compared with a model without such classification. The results indicated that including our proposed combination of variables could improve the accuracy of RFA flood estimates with the classification of the network types. This finding has considerable implications for hydraulic structure design.



The aim of this study is to employ a Time Lagged Recurrent Neural Network (TLRNN) model for forecasting near future reference evapotranspiration (ETo) values by using climate data taken from meteorological station located in Velestino, a village near the city of Volos, in Thessaly, centre of Greece. TLRNN is Multilayer Perceptron Neural Network (MLP-NN) with locally recurrent connections and short-term memory structures that can learn temporal variations from the dataset. The network topology is using input layer, hidden layer and a single output with the ETo values. The network model was trained using the back propagation through time algorithm. Performance evaluations of the network model done by comparing the Mean Bias Error (MBE), Root Mean Square Error (RMSE), Coefficient of Determination (R2) and Index of Agreement (IA). The evaluation of the results showed that the developed TLRNN model works properly and the forecasting ETo values approximate the FAO-56 PM values. A good proximity of predictions with the experimental data was noticed, achieving coefficients of determination (R2) greater than 75% and root mean square error (RMSE) values less than 1.0 mm/day. The forecasts range up to three days ahead and can be helpful to farmers for irrigation scheduling.



2021 ◽  
Vol 13 (9) ◽  
pp. 1630
Author(s):  
Yaohui Zhu ◽  
Guijun Yang ◽  
Hao Yang ◽  
Fa Zhao ◽  
Shaoyu Han ◽  
...  

With the increase in the frequency of extreme weather events in recent years, apple growing areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the frost loss in orchards during the flowering period is of great significance for optimizing disaster prevention measures, market apple price regulation, agricultural insurance, and government subsidy programs. The previous research on orchard frost disasters is mainly focused on early risk warning. Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model constructed using meteorological and remote sensing information and applies this model to the regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost event that occurred during the apple flowering period in Luochuan County, Northwestern China, on 17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard planting years, the number of flowering days, and the chill accumulation before frost, as well as the minimum temperature and daily temperature difference on the day of frost. Then, the model simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research can not only assist governments in optimizing traditional orchard frost prevention measures and market price regulation but can also provide a reference for agricultural insurance companies to formulate plans for compensation after frost.



Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1020
Author(s):  
Yanqi Dong ◽  
Guangpeng Fan ◽  
Zhiwu Zhou ◽  
Jincheng Liu ◽  
Yongguo Wang ◽  
...  

The quantitative structure model (QSM) contains the branch geometry and attributes of the tree. AdQSM is a new, accurate, and detailed tree QSM. In this paper, an automatic modeling method based on AdQSM is developed, and a low-cost technical scheme of tree structure modeling is provided, so that AdQSM can be freely used by more people. First, we used two digital cameras to collect two-dimensional (2D) photos of trees and generated three-dimensional (3D) point clouds of plot and segmented individual tree from the plot point clouds. Then a new QSM-AdQSM was used to construct tree model from point clouds of 44 trees. Finally, to verify the effectiveness of our method, the diameter at breast height (DBH), tree height, and trunk volume were derived from the reconstructed tree model. These parameters extracted from AdQSM were compared with the reference values from forest inventory. For the DBH, the relative bias (rBias), root mean square error (RMSE), and coefficient of variation of root mean square error (rRMSE) were 4.26%, 1.93 cm, and 6.60%. For the tree height, the rBias, RMSE, and rRMSE were—10.86%, 1.67 m, and 12.34%. The determination coefficient (R2) of DBH and tree height estimated by AdQSM and the reference value were 0.94 and 0.86. We used the trunk volume calculated by the allometric equation as a reference value to test the accuracy of AdQSM. The trunk volume was estimated based on AdQSM, and its bias was 0.07066 m3, rBias was 18.73%, RMSE was 0.12369 m3, rRMSE was 32.78%. To better evaluate the accuracy of QSM’s reconstruction of the trunk volume, we compared AdQSM and TreeQSM in the same dataset. The bias of the trunk volume estimated based on TreeQSM was −0.05071 m3, and the rBias was −13.44%, RMSE was 0.13267 m3, rRMSE was 35.16%. At 95% confidence interval level, the concordance correlation coefficient (CCC = 0.77) of the agreement between the estimated tree trunk volume of AdQSM and the reference value was greater than that of TreeQSM (CCC = 0.60). The significance of this research is as follows: (1) The automatic modeling method based on AdQSM is developed, which expands the application scope of AdQSM; (2) provide low-cost photogrammetric point cloud as the input data of AdQSM; (3) explore the potential of AdQSM to reconstruct forest terrestrial photogrammetric point clouds.



Author(s):  
Ahmad S. Tarawneh ◽  
Ahmad B. Hassanat ◽  
Issam Elkhadiri ◽  
Dmitry Chetverikov ◽  
Khalid Almohammadi


2013 ◽  
Vol 860-863 ◽  
pp. 2783-2786
Author(s):  
Yu Bing Dong ◽  
Hai Yan Wang ◽  
Ming Jing Li

Edge detection and thresholding segmentation algorithms are presented and tested with variety of grayscale images in different fields. In order to analyze and evaluate the quality of image segmentation, Root Mean Square Error is used. The smaller error value is, the better image segmentation effect is. The experimental results show that a segmentation method is not suitable for all images segmentation.



Sign in / Sign up

Export Citation Format

Share Document