scholarly journals Behavioral repertoire of the Brazilian spiny-rats, Trinomys setosus and Clyomys laticeps: different levels of sociality

2023 ◽  
Vol 83 ◽  
Author(s):  
L. M. R. Cantano ◽  
L. C. Luchesi ◽  
J. T. Takata ◽  
P. F. Monticelli

Abstract Behavior is a useful trait for comparative studies that provide the comprehension of phylogenetic relationships among species. Here, we present a description of two spiny-rats species’ behavioral repertoire, Clyomys laticeps and Trinomys setosus (Rodentia: Echimyidae). The affiliative and agonistic behavioral patterns were sampled during a three-year study of captive populations of wild animals. Observational data were collected in two phases under different arrangements of individuals in groups. We also compare the behavioral traits of T. setosus and C. laticeps with the known behavioral patterns of Trinomys yonenagae. We add categories to the previous descriptions of T. setosus and a standard ethogram for C. laticeps. Trinomys setosus showed a visual and vocal display we called foot-trembling, which was not described in this form and function for other species studied until now. We discuss the differences in their sociality levels and similarities and differences among behavior patterns and repertoires.

Author(s):  
Michael Batty

AbstractThis introductory chapter provides a brief overview of the theories and models that constitute what has come to be called urban science. Explaining and measuring the spatial structure of the city in terms of its form and function is one of the main goals of this science. It provides links between the way various theories about how the city is formed, in terms of its economy and social structure, and how these theories might be transformed into models that constitute the operational tools of urban informatics. First the idea of the city as a system is introduced, and then various models pertaining to the forces that determine what is located where in the city are presented. How these activities are linked to one another through flows and networks are then introduced. These models relate to formal models of spatial interaction, the distribution of the sizes of different cities, and the qualitative changes that take place as cities grow and evolve to different levels. Scaling is one of the major themes uniting these different elements grounding this science within the emerging field of complexity. We then illustrate how we might translate these ideas into operational models which are at the cutting edge of the new tools that are being developed in urban informatics, and which are elaborated in various chapters dealing with modeling and mobility throughout this book.


2021 ◽  
Vol 13 (2) ◽  
pp. 230-262
Author(s):  
Samantha Laporte ◽  
Tove Larsson ◽  
Larissa Goulart

Abstract This corpus-based study tests the Principle of No Synonymy across levels of abstraction by examining the syntactic realizations of subject extraposition (e.g., it is important to, it seems that), and by investigating at which level(s) of formal description a difference in form also entails a difference in function. The results show that distinct pairs of form and function, i.e. constructions, can be found at different levels of abstraction, but that these constructions also subsume formal realization patterns that do not encode a difference in function. This suggests that the Principle of No Synonymy largely breaks down at low levels of formal description. The study also offers a constructional account of subject extraposition by identifying a number of subject extraposition constructions, thereby showing that this is a syntactic phenomenon that is best analyzed as a family of constructions.


Author(s):  
Albert Albers ◽  
Andreas Braun ◽  
Eike Sadowski ◽  
David F. Wyatt ◽  
David C. Wynn ◽  
...  

To support the development and analysis of engineering designs at the embodiment stage, designers work iteratively with representations of those designs as they consider the function and form of their constituent parts. Detailed descriptions of “what a machine does” usually include flows of forces and active principles within the technical system, and their localization within parts and across the interfaces between them. This means that a representation should assist a designer in considering form and function at the same time and at different levels of abstraction. This paper describes a design modelling approach that enables designers to break down a system architecture into its subsystems and parts, while assigning functions and flows to parts and the interfaces between them. In turn, this may reveal further requirements to fulfil functions in order to complete the design. The approach is implemented in a software tool which provides a uniform, computable language allowing the user to describe functions and flows as they are iteratively discovered, created and embodied. A database of parts allows the user to search for existing design solutions. The approach is illustrated through an example: modelling the complex mechanisms within a humanoid robot.


Author(s):  
Patricia G. Arscott ◽  
Gil Lee ◽  
Victor A. Bloomfield ◽  
D. Fennell Evans

STM is one of the most promising techniques available for visualizing the fine details of biomolecular structure. It has been used to map the surface topography of inorganic materials in atomic dimensions, and thus has the resolving power not only to determine the conformation of small molecules but to distinguish site-specific features within a molecule. That level of detail is of critical importance in understanding the relationship between form and function in biological systems. The size, shape, and accessibility of molecular structures can be determined much more accurately by STM than by electron microscopy since no staining, shadowing or labeling with heavy metals is required, and there is no exposure to damaging radiation by electrons. Crystallography and most other physical techniques do not give information about individual molecules.We have obtained striking images of DNA and RNA, using calf thymus DNA and two synthetic polynucleotides, poly(dG-me5dC)·poly(dG-me5dC) and poly(rA)·poly(rU).


2011 ◽  
Author(s):  
Scott Fluke ◽  
Russell J. Webster ◽  
Donald A. Saucier

2013 ◽  
Author(s):  
Joshua Wilt ◽  
William Revelle

Sign in / Sign up

Export Citation Format

Share Document