scholarly journals Effect of cycle time and airflow in biological nitrogen removal from poultry slaughterhouse wastewater using sequencing batch reactor

2015 ◽  
Vol 35 (3) ◽  
pp. 567-577 ◽  
Author(s):  
Carla L. Lopes ◽  
Juliana B. R. Mees ◽  
Luciane Sene ◽  
Karina Q. de Carvalho ◽  
Divair Christ ◽  
...  

This study aimed to evaluate the influence of airflow (0.25, 0.50 and 0.75 L.L-1.min-1) and cycle time (10.45 h, 14.25 h and 17.35 h) on a sequencing batch reactor (SBR) performance in promoting nitrification and denitrification of poultry slaughterhouse wastewater. The operational stages included feeding, aerobic and anoxic reactions, sedimentation and discharge. SBR was operated in a laboratory scale with a working volume of 4 L, keeping 25% of biomass retained inside the reactor as inoculum for the next batch. In the anoxic stage, C: N ratio was maintained between 5 and 6 by adding cassava starch wastewater. A factorial design (22) with five repetitions was designed at the central point to evaluate the influence of cycle time and airflow on total inorganic nitrogen removal (N-NH4++N-NO2-+N-NO3-) and in the whole process (nitrification and denitrification). The highest total inorganic nitrogen removal (93.3%) was observed for airflow of 0.25 L.L-1.min‑1 and a cycle time of 14.25 h. At the end of the experiment, the sludge inside the reactor was characterized by fluorescent in situ hybridization (FISH), indicating the presence of ammonia and nitrite oxidizing bacteria.

2015 ◽  
Vol 17 (3) ◽  
pp. 628-636 ◽  

<div> <p>Sequencing batch reactor (SBR) is a time-oriented wastewater treatment (WWT) system in a single reactor with flow and energy input according to the predetermined operational cycle time. The treatment efficiency of SBR varies with the duration of the cycle time, which affects the reactor size and hence the cost of WWT plant. This paper presents an experimental study in a bench scale SBR model with a working volume of 15 L with an onjective to determine&nbsp; the optimum cycle time for simultaneous removal of carbon and nutrient from the dairy wastewater. Using the equalized dairy wastewater experiments with four cycle times of 8 h, 6 h, 4 h and 2 h were conducted and the effluent concentrations were compared to the effluent standards. In conclusion, the data suggest the SBR process with 6 h cycle time as the optimum cycle time for treating dairy wastewater for simultaneous carbon and nutrient removal.</p> </div> <p>&nbsp;</p>


2009 ◽  
Vol 59 (3) ◽  
pp. 573-582 ◽  
Author(s):  
Xiao-ming Li ◽  
Dong-bo Wang ◽  
Qi Yang ◽  
Wei Zheng ◽  
Jian-bin Cao ◽  
...  

It was occasionally found that a significant nitrogen loss in solution under neutral pH value in a sequencing batch reactor with a single-stage oxic process using synthetic wastewater, and then further studies were to verify the phenomenon of nitrogen loss and to investigate the pathway of nitrogen removal. The result showed that good performance of nitrogen removal was obtained in system. 0–7.28 mg L−1 ammonia, 0.08–0.38 mg L−1 nitrite and 0.94–2.12 mg L−1 nitrate were determined in effluent, respectively, when 29.85–35.65 mg L−1 ammonia was feeding as the sole nitrogen source in influent. Furthermore, a substantial nitrogen loss in solution (95% of nitrogen influent) coupled with a little gaseous nitrogen increase in off-gas (7% of nitrogen influent) was determined during a typical aerobic phase. In addition, about 322 mg nitrogen accumulation (84% of nitrogen influent) was detected in activated sludge. Based on nitrogen mass balance calculation, the unaccounted nitrogen fraction and the ratio of nitrogen accumulation in sludge/nitrogen loss in solution were 14.6 mg (3.7% of nitrogen influent) and 0.89, respectively. The facts indicated that the essential pathway of nitrogen loss in solution in this study was excess nitrogen accumulation in activated sludge.


2018 ◽  
Author(s):  
◽  
Siphesihle Mangena Khumalo

South Africa is not an exception when it comes to the issue of fresh water scarcity perpetuated by environmental pollution among many other factors. Industrial wastewater particularly emanating from the brewing industry, contains high-strength organic, inorganic, and biological compounds which are toxic to the environment. Due to stringent industrial effluent dewatering standards enforced by both local and international environmental protection entities, industrial wastewater cannot be discharged into receiving water bodies prior to treatment. The overall aim of this study was to evaluate the performance or treatment efficacy of a laboratory scale sequencing batch reactor on biological nutrient removal using industrial wastewater from brewery. In this study, two laboratory scale sequencing batch reactors (SBRs) operated in a cyclic aerobic-anaerobic configuration inoculated with activated sludge were investigated for their removal of orthophosphates and nitrogen compounds from brewery wastewater. SBR-1 was investigated for nitrogen group pollutant removal and SBR-2 was investigated for orthophosphate removal. The findings of the study are reported based on overall removal efficacies for the following process monitoring parameters: orthophosphates, ammoniacal nitrogen, total Kjeldahl nitrogen, total nitrogen, total organic nitrogen, total inorganic nitrogen and NO3-N+NO2-N. From the investigation, the following overall removal efficacies were obtained: 69% orthophosphates, 69% ammoniacal nitrogen, 59% total Kjeldahl nitrogen, 60% total nitrogen, 64% total organic nitrogen, 67% total inorganic nitrogen and 56% NO3-N+NO2-N at an organic loading rate of 3.17 kg Total Chemical Oxygen Demand (TCOD) /m3.day with a food to microorganism ratio of 2.86 g TCOD/g Volatile Suspended Solids (VSS).day. These removal efficacies were attained for a hydraulic retention time of 18 hours for both SBRs with a solids retention time of 5 days for SBR-1 and 7 days for SBR-2. Both reactors were operated at a mesophilic temperature range of 23 to 26˚C and a pH range of 5 to 8.5. The temperature was left unadjusted because it was observed that it did not hinder any microbial activities during the biodegradation process. The Michealis-Menten’s and Monod models were implemented to study the substrate utilisation rate kinetics and microbial growth rate kinetics recording 15 141 g COD/m3.day; 12 518 g VSS/g VSS.day; 20 343 g COD/m3.day and 16 860 g VSS/g VSS.day for SBR-1 and SBR-2, respectively. The Monod model demonstrated a strong correlation fit between the substrate utilisation rate and microbial growth rate recording a polynomial correlation constant of R2 = 0.947 and 0.9582 for SBR-1 and SBR-2, respectively. The findings of this study showed that the cyclic aerobic-anaerobic configuration on a laboratory scale SBR inoculated with activated sludge for treatment of brewery wastewater for biological nutrients was feasible.


2012 ◽  
Vol 97 (20) ◽  
pp. 9235-9243 ◽  
Author(s):  
Dong Wei ◽  
Xiaodong Xue ◽  
Shuwei Chen ◽  
Yongfang Zhang ◽  
Liangguo Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document