scholarly journals Microstructural Analysis and Mechanical Behaviour of Copper CDA 101/AISI-SAE 1010 Dissimilar Metal Welds Processed by Friction Stir Welding

2022 ◽  
Vol 25 ◽  
Author(s):  
K. Giridharan ◽  
P. Sevvel ◽  
B. Stalin ◽  
M. Ravichandran ◽  
P. Sureshkumar
2013 ◽  
Vol 774-776 ◽  
pp. 1155-1159 ◽  
Author(s):  
Xiao Cong He

Friction stir welding (FSW) is a solid-state welding process where no gross melting of the material being welded takes place. Numerical modelling of the FSW process can provide realistic prediction of the thermo-mechanical behaviour of the process. Latest literature relating to finite element analysis (FEA) of thermo-mechanical behaviour of FSW process is reviewed in this paper. The recent development in thermo-mechanical modelling of FSW process is described with particular reference to two major factors that influence the performance of FSW joints: material flow and temperature distribution. The main thermo-mechanical modelling used in FSW process are discussed and illustrated with brief case studies from the literature.


2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110507
Author(s):  
Gajula Sri Venkata Seshu Kumar ◽  
Anshuman Kumar ◽  
S Rajesh ◽  
Rama Bhadri Raju Chekuri ◽  
Venkatesa Prabhu Sundaramurthy

Friction stir welding is an environmentally friendly process of joining due to the non-usage of flux, or any shield gas. Therefore, this article proposes an experimental and thermal investigation with optimization technique for studying the process of FSW on nylon 6A or polycaprolactam polymer composite plates. Specifically, the influence of input operating process parameters such as tool rotational speed (TRS), feed rate, and pitch values on the output response parameters like ultimate tensile strength (UTS), and hardness of welded joints is examined. In addition, L27 orthogonal array of Taguchi approach is employed for the optimization of design experiments of FSW parameters. The experimental setup is carried out with various process parameter combinations like 500, 1000, and 1500 rpm as TRS, 30, 40, and 50 mm as feed rate by varying the pitch values as 1, 2, and 3 mm. Further, the analysis of variance (ANOVA) also employed for finding the significant parameters of input process using the regression analysis equations. Finally, microstructural analysis is used to assess the mixing or dispersing uniformity of composites effectively. The experimental and optimum FSW parameters for maximum UTS are obtained at a feed rate of 30 mm/min, tool pitch of 3 mm, and the TRS of 500 rpm.


2018 ◽  
Vol 762 ◽  
pp. 339-342
Author(s):  
Ho Sung Lee ◽  
Koo Kil No ◽  
Joon Tae Yoo ◽  
Jong Hoon Yoon

The object of this study was to study mechanical properties of friction stir welded joints of AA2219 and AA2195. AA2219 has been used as an aerospace materials for many years primarily due to its high weldability and high specific strength in addition to the excellent cryogenic property so to be successfully used for manufacturing of cryogenic fuel tank for space launcher. Relatively new Aluminum-Lithium alloy, AA2195 provides significant saving on weight and manufacturing cost with application of friction stir welding. Friction stir welding is a solid-state joining process, which use a spinning tool to produce frictional heat in the work piece. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool, and the experiment was conducted under the condition that the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. Tensile tests were conducted to study the strength of friction stir welded joints and microhardness were measured with microstructural analysis. The results indicate the failure occurred in the relatively weaker TMAZ/HAZ interface of AA2219. The optimum process condition was obtained at the rotation speed of 600-800 rpm and the travelling speed of 180-240 mm/min.


Author(s):  
Mohd Ridha Muhamad ◽  
Sufian Raja ◽  
Mohd Fadzil Jamaludin ◽  
Farazila Yusof ◽  
Yoshiaki Morisada ◽  
...  

Abstract Dissimilar materials joining between AZ31 magnesium alloy and SPHC mild steel with Al-Mg powder additives were successfully produced by friction stir welding process. Al-Mg powder additives were set in a gap between AZ31 and SPHC specimen's butt prior to welding. The experiments were performed for different weight percentages of Al-Mg powder additives at welding speeds of 25 mm/min, 50 mm/min and 100 mm/min with a constant tool rotational speed of 500 rpm. The effect of powder additives and welding speed on tensile strength, microhardness, characterization across welding interface and fracture morphology were investigated. Tensile test results showed significant enhancement of tensile strength of 150 MPa for 10% Al and Mg (balance) powder additives welded joint as compared to the tensile strength of 125 MPa obtained for welded joint without powder additives. The loss of aluminium in the alloy is compensated by Al-Mg powder addition during welding under a suitable heat input condition identified by varying welding speeds. Microstructural analysis revealed that the Al-Mg powder was well mixed and dispersed at the interface of the joint at a welding speed of 50 mm/min. Intermetallic compound detected in the welding interface contributed to the welding strength.


2019 ◽  
Vol 969 ◽  
pp. 589-594
Author(s):  
R. Dinesh Kumar ◽  
D. Srija ◽  
P. Suresh ◽  
S. Muthukumaran

The aluminium alloys AA2024 and AA6061 are widely used for fabricating light weight structural member with better strength and corrosion resistance. Friction stir welding (FSW) parameters such as rotational speed, tool shoulder profile and traverse speed are used to identify the corrosion resistance and microstructural analysis in different weld region of AA2024-AA6061 dissimilar joints. In this work, Taguchi L9 orthogonal array with three variables and three stages has been used to reduce the number of experiments. Potentiodynamic polarization (PDP) testing results are optimized by ANOVA technique and obtain the corrosion rate as 5.72 mil/yr and resistance polarization as 835.28 ohm.cm2. The optimal parameter set is found to be 1000 rpm, flat shoulder and 45 mm/min. The microstructural analysis reveals localized pit dissolution in the nugget zoneThe aluminium alloys AA2024 and AA6061 are widely used for fabricating light weight structural member with better strength and corrosion resistance. Friction stir welding (FSW) parameters such as rotational speed, tool shoulder profile and traverse speed are used to identify the corrosion resistance and microstructural analysis in different weld region of AA2024-AA6061 dissimilar joints. In this work, Taguchi L9 orthogonal array with three variables and three stages has been used to reduce the number of experiments. Potentiodynamic polarization (PDP) testing results are optimized by ANOVA technique and obtain the corrosion rate as 5.72 mil/yr and resistance polarization as 835.28 ohm.cm2. The optimal parameter set is found to be 1000 rpm, flat shoulder and 45 mm/min. The microstructural analysis reveals localized pit dissolution in the nugget zone.


Sign in / Sign up

Export Citation Format

Share Document