scholarly journals A mathematical model for malaria transmission relating global warming and local socioeconomic conditions

2001 ◽  
Vol 35 (3) ◽  
pp. 224-231 ◽  
Author(s):  
Hyun M Yang

OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.


Author(s):  
Л.Ф. Сафиуллина

В статье рассмотрен вопрос идентифицируемости математической модели кинетики химической реакции. В процессе решения обратной задачи по оценке параметров модели, характеризующих процесс, нередко возникает вопрос неединственности решения. На примере конкретной реакции продемонстрирована необходимость проводить анализ идентифицируемости модели перед проведением численных расчетов по определению параметров модели химической реакции. The identifiability of the mathematical model of the kinetics of a chemical reaction is investigated in the article. In the process of solving the inverse problem of estimating the parameters of the model, the question arises of the non-uniqueness of the solution. On the example of a specific reaction, the need to analyze the identifiability of the model before carrying out numerical calculations to determine the parameters of the reaction model was demonstrated.



Author(s):  
L. F. Safiullina ◽  
◽  
I. M. Gubaydullin ◽  
K. F. Koledina ◽  
R. Z. Zaynullin ◽  
...  


2018 ◽  
Vol 81 (1) ◽  
Author(s):  
Muhamad Hanis Nasir ◽  
Fuaada Mohd Siam

Real-life situations showed damage effects on non-targeted cells located in the vicinity of an irradiation region, due to danger signal molecules released by the targeted cells. This effect is widely known as radiation-induced bystander effects (RIBE). The purpose of this paper is to model the interaction of non-targeted cells towards bystander factors released by the irradiated cells by using a system of structured ordinary differential equations. The mathematical model and its simulations are presented in this paper. In the model, the cells are grouped based on the number of double-strand breaks (DSBs) and mis-repair DSBs because the DSBs are formed in non-targeted cells. After performing the model's simulations, the analysis continued with sensitivity analysis. Sensitivity analysis will determine which parameter in the model is the most sensitive to the survival fraction of non-targeted cells. The proposed mathematical model can explain the survival fraction of non-targeted cells affected by the bystander factors.



Author(s):  
Vladimir Grinkevich ◽  

The evaluation of the mathematical model parameters of a non-linear object with a transport delay is considered in this paper. A temperature controlled stage based on a Peltier element is an identification object in the paper. Several input signal implementations are applied to the input of the identification object. The least squares method is applied for the calculation of the non-linear differential equitation parameters which describe the identification object. The least squares method is used due to its simplicity and the possibility of identification non-linear objects. The parameters values obtained in the process of identification are provided. The plots of temperature changes in the temperature control system with a controller designed based on the mathematical model of the control object obtained as a result of identification are shown. It is found that the mathematical model obtained in the process of identification may be applied to design controllers for non-linear systems, in particular for a temperature stage based on a Peltier element, and for self-tuning controllers. However, the least square method proposed in the paper cannot estimate the transport delay time. Therefore it is required to evaluate the time delay by temperature transient processes. Dynamic object identification is applied when it is required to obtain a mathematical model structure and evaluate the parameters by an input and output control object signal. Also, identification is applied for auto tuning of controllers. A mathematical model of a control object is required to design the controller which is used to provide the required accuracy and stability of control systems. Peltier elements are applied to design low-power and small- size temperature stage . Hot benches based on a Peltier element can provide the desired temperature above and below ambient temperature.



1971 ◽  
Vol 69 (3) ◽  
pp. 423-433 ◽  
Author(s):  
B. J. Hammond ◽  
D. A. J. Tyrrell

SUMMARYRecords of seven common-cold outbreaks on the island of Tristan da Cunha are compared with the corresponding time courses given by the mathematical model of Kermack & McKendrick (1927) and with an alternative model that directly involves a constant average duration of individual infection. Using computer simulation techniques the latter model is shown to be preferred and is then closely matched to the field data to obtain values for the model parameters. Consideration is then given to the intensity of epidemics predicted by the model and to the distribution of the actual epidemics relative to the theoretical epidemic threshold.



2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Abadi Abay Gebremeskel

Mathematical models become an important and popular tools to understand the dynamics of the disease and give an insight to reduce the impact of malaria burden within the community. Thus, this paper aims to apply a mathematical model to study global stability of malaria transmission dynamics model with logistic growth. Analysis of the model applies scaling and sensitivity analysis and sensitivity analysis of the model applied to understand the important parameters in transmission and prevalence of malaria disease. We derive the equilibrium points of the model and investigated their stabilities. The results of our analysis have shown that if R0≤1, then the disease-free equilibrium is globally asymptotically stable, and the disease dies out; if R0>1, then the unique endemic equilibrium point is globally asymptotically stable and the disease persists within the population. Furthermore, numerical simulations in the application of the model showed the abrupt and periodic variations.



2020 ◽  
Vol 180 ◽  
pp. 02019 ◽  
Author(s):  
Marzhan Temirbekova ◽  
Madina Aliyarova ◽  
Iliya Iliev ◽  
Aliya Yelemanova ◽  
Saule Sagintayeva

This paper justifies the efficiency of the biogas collection and utilization at the MSW (municipal solid waste) landfill in Almaty with the installation of several modern biogas plants. The optimal mode of processes occurring in a biogas plant is determined by computer generated simulations. Mathematical model parameters were identified to describe biochemical processes occurring in a biogas plant. Two approaches are used to resolve the mathematical model: the finite-difference method for solving the system of differential equations and simulation modeling by using the Any Logic package. A program is written in the algorithmic language C ++. Numerous calculations were carried out, the results of which are presented in curves and their qualitative picture is consistent with the ongoing processes. The created computer program allows to make a preliminary forecast of anaerobic fermentation occurring in the bioreactor depending on volume of the substrate, methane microorganisms and temperature conditions.



2020 ◽  
Vol 28 (01) ◽  
pp. 167-182
Author(s):  
IULIA MARTINA BULAI ◽  
STÉPHANIE DEPICKÈRE ◽  
VITOR HIRATA SANCHES

Malaria remains a primary parasitic disease in the tropical world, generating high morbidity and mortality in human populations. Recently, community surveys showed a high proportion of asymptomatic cases, which are characterized by a low parasitemia and a lack of malaria symptoms. Until now, the asymptomatic population is not treated for malaria and thus remains infective for a long time. In this paper, we introduce a four-dimensional mathematical model to study the influence of asymptomatic people on malaria transmission in low-transmission areas, specifically using data from Brazil. The equilibrium points of the system are calculated, and their stability is analyzed. Via numerical simulations, more in-depth analyzes of the space of some crucial parameters on the asymptomatic population are done, such as the per capita recovery rates of symptomatic and asymptomatic people, the ratio of the density of mosquitoes to that of humans, the mortality rate of mosquitoes and the probability of undergoing asymptomatic infection upon an infectious mosquito bite. Our results indicate that the disease-free equilibrium is inside the stability region if asymptomatic people are treated and/or the ratio of the density of mosquitoes to that of humans is decreased and/or the mortality rate of mosquitoes is increased.



2012 ◽  
Vol 220-223 ◽  
pp. 952-957
Author(s):  
Chen Liu ◽  
Xiao Yan Liu

From the view of engineering, based on expatiating the features of systems biology, the paper discusses the workflows and the research emphasis of systems biology. It also explains how to model and analyze the dynamic process of signal transmitting network for a biological system by an example. Based on the complexity and uncertainty of the mathematical model, the right methods are chosen to realize the effective estimation of state variables and model parameters for the biochemical pathway.



Author(s):  
Aleksandra Sander ◽  
Jasna Prlić Kardum ◽  
Antun Glasnović


Sign in / Sign up

Export Citation Format

Share Document