Study on the Dynamic Models of Systems Biology from the View of Engineering

2012 ◽  
Vol 220-223 ◽  
pp. 952-957
Author(s):  
Chen Liu ◽  
Xiao Yan Liu

From the view of engineering, based on expatiating the features of systems biology, the paper discusses the workflows and the research emphasis of systems biology. It also explains how to model and analyze the dynamic process of signal transmitting network for a biological system by an example. Based on the complexity and uncertainty of the mathematical model, the right methods are chosen to realize the effective estimation of state variables and model parameters for the biochemical pathway.

2021 ◽  
Vol 22 (9) ◽  
pp. 451-458
Author(s):  
A. A. Bobtsov ◽  
R. Ortega ◽  
N. A. Nikolaev ◽  
O. V. Slita ◽  
O. A. Kozachek ◽  
...  

In this paper the solution was proposed for the state variables estimation problem in the mathematical model of the DC switch-mode power converter built according to the Ćuk scheme. Pulse converters are one of the main components of most modern electrical devices and the circuit proposed by Slobodan Ćuk in the 70s of the 20th century is still relevant and demanded. Traditionally, PI (proportional-integral) controllers or proportional-integral adaptive control algorithm (PI-PBC), based on passification methods and superior to standard PI controllers in accuracy, are used as the control algorithm for power converters. However, you need to know the entire vector of the state variables of the converter to build a PI-PBC controller, and moreover, all its parameters must be accurately known. Unfortunately, in practice, such assumptions are not fulfilled, since parametric drifting is possible, and measurements of the converter’s state require additional sensors, which in some cases does not justify itself. Thus, there is a need to develop additional observers or estimators that allow obtaining data on all variables of the converter, as well as its parameters. The solution is based on the GPEBO method (generalized parameter estimation-based observers). The problem was solved under assumption that only the output signal (the output voltage of the converter) is measurable and some of the mathematical model parameters are unknown. An important aspect of the observer design is the development of an algorithm for unknown parameters and the state vector of a mathematical model estimation that ensures convergence in a finite time. Finite-time convergence is extremely important when designing observers since transients in pulse converters occur very quickly.


Author(s):  
Vladimir Grinkevich ◽  

The evaluation of the mathematical model parameters of a non-linear object with a transport delay is considered in this paper. A temperature controlled stage based on a Peltier element is an identification object in the paper. Several input signal implementations are applied to the input of the identification object. The least squares method is applied for the calculation of the non-linear differential equitation parameters which describe the identification object. The least squares method is used due to its simplicity and the possibility of identification non-linear objects. The parameters values obtained in the process of identification are provided. The plots of temperature changes in the temperature control system with a controller designed based on the mathematical model of the control object obtained as a result of identification are shown. It is found that the mathematical model obtained in the process of identification may be applied to design controllers for non-linear systems, in particular for a temperature stage based on a Peltier element, and for self-tuning controllers. However, the least square method proposed in the paper cannot estimate the transport delay time. Therefore it is required to evaluate the time delay by temperature transient processes. Dynamic object identification is applied when it is required to obtain a mathematical model structure and evaluate the parameters by an input and output control object signal. Also, identification is applied for auto tuning of controllers. A mathematical model of a control object is required to design the controller which is used to provide the required accuracy and stability of control systems. Peltier elements are applied to design low-power and small- size temperature stage . Hot benches based on a Peltier element can provide the desired temperature above and below ambient temperature.


1971 ◽  
Vol 69 (3) ◽  
pp. 423-433 ◽  
Author(s):  
B. J. Hammond ◽  
D. A. J. Tyrrell

SUMMARYRecords of seven common-cold outbreaks on the island of Tristan da Cunha are compared with the corresponding time courses given by the mathematical model of Kermack & McKendrick (1927) and with an alternative model that directly involves a constant average duration of individual infection. Using computer simulation techniques the latter model is shown to be preferred and is then closely matched to the field data to obtain values for the model parameters. Consideration is then given to the intensity of epidemics predicted by the model and to the distribution of the actual epidemics relative to the theoretical epidemic threshold.


2020 ◽  
Vol 180 ◽  
pp. 02019 ◽  
Author(s):  
Marzhan Temirbekova ◽  
Madina Aliyarova ◽  
Iliya Iliev ◽  
Aliya Yelemanova ◽  
Saule Sagintayeva

This paper justifies the efficiency of the biogas collection and utilization at the MSW (municipal solid waste) landfill in Almaty with the installation of several modern biogas plants. The optimal mode of processes occurring in a biogas plant is determined by computer generated simulations. Mathematical model parameters were identified to describe biochemical processes occurring in a biogas plant. Two approaches are used to resolve the mathematical model: the finite-difference method for solving the system of differential equations and simulation modeling by using the Any Logic package. A program is written in the algorithmic language C ++. Numerous calculations were carried out, the results of which are presented in curves and their qualitative picture is consistent with the ongoing processes. The created computer program allows to make a preliminary forecast of anaerobic fermentation occurring in the bioreactor depending on volume of the substrate, methane microorganisms and temperature conditions.


Author(s):  
Roddie R. Judkins ◽  
Timothy R. Armstrong ◽  
Solomon D. Labinov

A universal mathematical model (UMM) has been developed and applied to the LAJ (for Labinov, Armstrong, and Judkins) cycle, a new combined-cycle, fossil-fuel power system. The UMM includes static and dynamic models of the system. The static model allows for thermodynamic and thermochemical analyses of the basic system components (reformer, turbine, membrane separator, fuel cell, air compressor, heat exchanger, and other components) and the entire system. Equilibrium compositions of reforming products are defined by minimizing Gibbs free energy of the mixtures using the Lagrangian multiplier method. The dependence of the main system parameters on pressure (P), temperature (T), and water-to-methane molar ratios (N) at the steam reformer have been evaluated. For selected reforming parameters, viz., P = 4.0 MPa and T = 1200 K, the degree of methane conversion is near 95% with N = 5. However, in view of mass and size limitations on equipment, a lower value of N = 3 is preferred, in which case the degree of methane conversion is 88%. The dependence of the system static model parameters on N has been investigated, and economic characteristics of the model have been evaluated for an output power of 250 kW. It is shown that when, N = 3, the fuel cost contribution to overall electricity costs is 1 cent/kWh.


1990 ◽  
Vol 43 (2) ◽  
pp. 257-268 ◽  
Author(s):  
E. Mjølhus ◽  
T. Hada

The stability of finite-amplitude weakly dispersive circularly polarized MHD wave trains with respect to oblique modulations is investigated. The mathematical model is a multi-dimensional extension of the DNLS equation. We have found that the right-hand-polarized wave, which is stable with respect to parallel modulations, is unstable with respect to certain oblique modulations for most primary wavenumbers.


Author(s):  
Aleksandra Sander ◽  
Jasna Prlić Kardum ◽  
Antun Glasnović

2013 ◽  
Vol 680 ◽  
pp. 479-483
Author(s):  
Pei Ying Li ◽  
Yu Tian Pan

In order to meet the demands of practical, convenient and quick charge requirements, a mathematical model of a certain type of vehicle starting lead-acid battery is established. Using the method of circuit analysis, the model parameters are identified by the known test data. In addition, battery charge model is simulated in each charge stage using the intelligent three-stage charge method, simulation waveform and test waveform fit very well, absolute errors between them reach to 10-6. Simulation results show that the mathematical model and its analysis method is proper for the charge characteristics of vehicle starting lead-acid battery. This has a good guidance to design intelligent charger and extend the battery life.


Author(s):  
S. Yu Martynov ◽  
V. L. Poliakov

Abstract The mathematical model of physicochemical iron removal from groundwater was developed. It consists of three interrelated compartments. The results of the experimental research provide information in support of the first two compartments of the mathematical model. The dependencies for the concentrations of the adsorbed ferrous iron and deposited hydroxide concentrations are obtained as a result of the exact solution of the system of the mass transfer equations for two forms of iron in relation to the inlet surface of the bed. An analysis of the experimental data of the dynamics of the deposit accumulation in a small bed sample was made, using a special application that allowed to select the values of the kinetic coefficients and other model parameters based on these dependencies. We evaluated the autocatalytic effect on the dynamics of iron ferrous and ferric forms. The verification of the mathematical model was carried out involving the experimental data obtained under laboratory and industrial conditions.


Genetics ◽  
1980 ◽  
Vol 96 (1) ◽  
pp. 297-313
Author(s):  
Philip W Hedrick

ABSTRACT The theory determining the probability of fixation of new mutants in a population that allows increased adaptation has been developed by Kimura. Two experimental systems were used to examine this theory. First, alleles were introduced at low frequencies into populations and their fate observed. The second approach was to follow populations with closely linked mutants that were introduced on different chromosomes and to follow the fate of favorable recombinants. These experiments allowed the investigation of the appropriateness of the mathematical model for the particular biological system. In the experiments reported here using two X-linked Drosophila mutants, y and w, the predictions of the theory were reasonably fulfilled in the first experimental system (introduction of new alleles), but not in the second system (favorable recombinants). However, the theoretical framework seems quite robust in that it allowed a satisfactory explanation of the experimental results for the second system as well. The probability of, and the time until, production of a favorable recombinant is discussed.


Sign in / Sign up

Export Citation Format

Share Document