scholarly journals Structural sustainability of cambisol under different land use system

2012 ◽  
Vol 36 (6) ◽  
pp. 1724-1732 ◽  
Author(s):  
Paula Cristina Caruana Martins ◽  
Moacir de Souza Dias Junior ◽  
Ayodele Ebenezer Ajayi ◽  
Fátima Maria de Souza Moreira

Incongruous management techniques have been associated with some significant loss of agricultural land to degradation in many parts of the world. Land degradation results in the alteration of physical, chemical and biological properties of the soil, thereby posing a serious threat to sustainable agricultural development. In this study, our objective is to evaluate the changes in a Cambisol structure under six land use systems using the load bearing capacity model. Sampling was conducted in Amazonas Region, Brazil, in the following land use: a) young secondary forest; b) old secondary forest; c) forest; d) pasture; e) cropping, and f) agroforestry. To obtain the load bearing capacity models the undisturbed soil samples were collected in those land use systems and subjected to the uniaxial compression test. These models were used to evaluate which land use system preserved or degraded the Cambisol structure. The results of the bulk density and total porosity of the soil samples were not adequate to quantify structural degradation in Cambisol. Using the forest topsoil level (0-0.03 m) as a reference, it was observed that pasture land use system was most severe in the degradation of the soil structure while the structure were most preserved under old secondary forest, cropping system and forest. At the subsoil level (0.10-0.13 m depth), the soil structure was most degraded in the cropping land use system while it was most preserved in young secondary forest and pasture. At the 0.20-0.23 m depth, soil structure degradation was most severe in the old secondary forest system and well preserved in young secondary forest, cropping and agroforestry.

2012 ◽  
Vol 36 (4) ◽  
pp. 391-398 ◽  
Author(s):  
Paula Cristina Caruana Martins ◽  
Moacir de Souza Dias Junior ◽  
Maria Luiza de Carvalho Andrade ◽  
Paulo Tácito Gontijo Guimarães

The main source of soil structure degradation in coffee plantation is the machinery traffic because these operations may cause soil compaction affecting the crop development. This study aimed to generate the load-bearing capacity models for a Red-Yellow Latosol and to determine through the use of these models the soil susceptibility to compaction of the coffee plantation due to the implantation time and the compaction caused by the machinery traffic on the traffic lines located at the top and bottom of the ground. This study was carried out in the EPAMIG Experimental Farm, located at Três Pontas, MG, in coffee plantations (Coffee arabica L.) with 2, 7, 18 and 33 years of establishment. To obtain the load-bearing capacity models, 12 undisturbed soil samples were randomly collected in the 0-3 cm and 15-18 cm layers in the position between the rows for each establishment time of the coffee plantation. It was also randomly collected 10 undisturbed soil samples for each establishment time of the coffee plantations along the tractor traffic lines located at the top and bottom of the ground. These undisturbed soil samples were used in the uniaxial compression tests. The use of the load-bearing capacity models allow to identify the soil susceptibility to compaction due to the implementation time of the coffee plantation and the compaction caused by the machinery traffic on the traffic lines located at the top and bottom of the ground. The percentage of compacted soil samples increases with the establishment time in the layer of 15-18 cm.


2013 ◽  
Vol 37 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Paula Sant'Anna Moreira Pais ◽  
Moacir de Souza Dias Junior ◽  
Adriana Cristina Dias ◽  
Piero Iori ◽  
Paulo Tácito Gontijo Guimarães ◽  
...  

It is essential to know the levels of pressure applied to the soil by different weed managements to adapt the management of coffee plantations in a sustainable manner. The objectives of this study were: a) to generate load-bearing capacity models of a Red-Yellow Latosol (Oxisol) submitted to different weed managements and b) to determine which weed management resulted in higher compression. The study was conducted at the Experimental Farm of EPAMIG, located near the community Farias, in Lavras-MG (latitude 21° 14' 43" S and longitude 44° 59' 59" W and altitude of 919 m). The soil is a Red-Yellow Latosol (LVA) cultivated with coffee plantation using Topazio MG 1190 coffee variety, since 2006. We evaluated five weed managements, three being through mechanical control (harrow (GD), mowing (RÇ) and brush (TC)) and two by chemical control (post-emergence herbicide (HPos) and pre emergence herbicide (HPre)). To obtain the load-bearing capacity models, 10 undisturbed soil samples were randomly collected in the 0-3, 10-13 and 25-28 cm layers between the rows. The load-bearing capacity models which indicated a higher compaction were: in the 0-3 cm layer, TC and GD; in the 10-13 cm layer, HPre, HPos and RÇ and in the 25-28 cm layer, GD. The load-bearing capacity models that indicated greater susceptibility to compaction were: in the 0-3 cm layer, HPos; in the 10-13 cm layer, GD and TC and in the 25-28 cm layer, HPre.


2018 ◽  
Vol 42 (1) ◽  
pp. 58-68 ◽  
Author(s):  
Paula Cristina Caruana Martins ◽  
Moacir de Souza Dias Junior ◽  
Ayodele Ebenezer Ajayi ◽  
Ernesto Norio Takahashi ◽  
Diego Tassinari

ABSTRACT Traffic of farm machinery during harvest and logging operations has been identified as the main source of soil structure degradation in forestry activity. Soil susceptibility to compaction and the amount of compaction caused by each forest harvest operation differs according to a number of factors (such as soil strength, soil texture, kind of equipment, traffic intensity, among many others), what requires the adequate assessment of soil compaction under different traffic conditions. The objectives of this study were to determine the susceptibility to compaction of five soil classes with different textures under eucalyptus forests based on their load bearing capacity models; and to determine, from these models and the precompression stresses obtained after harvest operations, the effect of traffic intensity with different equipment in the occurrence of soil compaction. Undisturbed soil samples were collected before and after harvest operations, being then subjected to uniaxial compression tests to determine their precompression stress. The coarse-textured soils were less resistant and endured greater soil compaction. In the clayey LVd2, traffic intensity below four Forwarder passes limited compaction to a third of the samples, whereas in the sandy loam PVd all samples from the 0-3 cm layer were compacted regardless of traffic intensity. The Feller Buncher and the Clambunk presented a high potential to cause soil compaction even with only one or two passes. The use of soil load bearing capacity models and precompression stress determined after harvest and logging operations allowed insight into the soil compaction process in forestry soils.


2013 ◽  
Vol 37 (2) ◽  
pp. 130-137 ◽  
Author(s):  
Piero Iori ◽  
Moacir de Souza Dias Junior ◽  
Ayodele Ebenezer Ajayi ◽  
Paulo Tácito Gontijo Guimarães ◽  
Paula Sant'Anna Moreira Pais ◽  
...  

Precompression stress is an important property for assessment of tropical soil structure sustainability and is often determined in laboratory tests. The objective of this study was to compare the load bearing capacity models obtained with controlled moisture in laboratory and those obtained with natural field moistures determined a long one year. The evaluation of soil structural sustainability follows four distinct steps: soil sampling in the field, uniaxial compression test of the samples in the laboratory, determination of precompression stress and estimation of the load bearing capacity models. Laboratory estimates of precompression stress were obtained from moisture controlled in laboratory and from natural moisture determined in a field a long one year. In this process, the soil samples were saturated by capillarity with distilled water in laboratory, and after 48 hours, the samples were air dried to obtain the different moisture contents. Then, the precompression stress was determined for this both conditions. To verify if the load bearing capacity models obtained with controlled moisture in laboratory may represent the load bearing models obtained with natural field moisture, these models were compared using the homogeneity test procedure. It was observed that 75% of field models analyzed were similar to the laboratory models. Thus, due to the similarity on the load-bearing capacity models obtained using natural (field) or controlled (laboratory) moisture contents, the assessment of the soil structure sustainability can be done using both methods.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-60
Author(s):  
Per Heyser ◽  
Vadim Sartisson ◽  
Gerson Meschut ◽  
Marcel Droß ◽  
Klaus Dröder

2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Sign in / Sign up

Export Citation Format

Share Document