scholarly journals Protection between strains of Passion fruit woodiness virus in sunnhemp

2005 ◽  
Vol 30 (3) ◽  
pp. 307-311 ◽  
Author(s):  
Quelmo S. Novaes ◽  
Jorge A. M. Rezende

The main objective of the present study was to evaluate the effect of the sunhemp (Crotalaria juncea) host species on the protective ability of two mild strains of Passion fruit woodiness virus (PWV), named F-101 and F-144, which had failed to protect passion flowers (Passiflora edulis f. flavicarpa) in previous experiments. The nucleotide sequences of the capsid protein (CP) gene and the 3'-non-translated region (3'-NTR) of these mild strains and the severe strain of PWV-SP were compared to confirm their relationship. The results of two protective tests with sunhemp plants in the greenhouse and one test under field conditions showed that all plants infected with either mild strain were protected against infection and/or symptom expression of the severe strain of PWV-SP. Evaluation of the relative concentration of the mild strains in sun hemp leaves showed an apparent uniformity in virus distribution in the leaf tissues, different than that which was previously reported for these mild strains in passion flower leaves. These results agree with previous studies that showed the effect of the concentration of the protective strains and the host species in the protection process.

Author(s):  

Abstract A new distribution map is provided for Passion fruit woodiness virus McKnight. Hosts: Passion fruit (Passiflora edulis). Information is given on the geographical distribution in AFRICA, Kenya, ASIA, Brunei, AUSTRALASIA & OCEANIA, Australia, SOUTH AMERICA, Surinam.


2003 ◽  
Vol 60 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Quelmo Silva de Novaes ◽  
Jorge Alberto Marques Rezende

The Passion fruit woodiness virus (PWV) is the most important virus affecting passion fruit (Passiflora edulis f. flavicarpa Deg.) crops in Brazil. The main purpose of this work was to select mild strains of PWV and to evaluate their protective effect against a severe strain of the virus. Three mild strains were selected from outstanding plants found in orchards severely affected by the virus (F-101, F-102 and F-103) and three others were obtained from blisters formed in passion fruit vine leaves showing mosaic (F-99, F-144 and F-145). The protective effect of the mild strains was evaluated for vines under greenhouse and field conditions. Plants pre-immunized with mild strains F-101, F-102 and F-144, in a greenhouse, had partial protection against the severe strain PWV-SP. In a first field experiment, all passion fruit vines pre-immunized with the six selected mild strains showed severe symptoms of the disease, approximately four months after the challenge inoculation with the PWV-SP strain. Results from a second field experiment, with vines pre-immunized with strains F-101 and F-144, followed by a quantitative evaluation of the mild strains in different leaves of the protected plants, indicated that breakdown in protection seems to be related to the low concentration and/or irregular distribution of the mild strains in leaves, which allows the existence of infection sites available for the establishment of the severe strain. Pre-immunization was not an appropriate alternative for the control of the passion fruit woodiness disease.


1964 ◽  
Vol 15 (4) ◽  
pp. 560 ◽  
Author(s):  
RH Taylor ◽  
KA Kimble

In Victoria cucumber mosaic virus (CMV) has been shown to be the cause of the woodiness disease of Passifloua edulis. This virus causes a slow decline of infected P. edulis seedlings, and a more rapid decline of vines grafted onto P. caerulea rootstocks. In Queensland a similar disease of passion fruit also occurs. The Queensland disease was shown to be caused by a virus which differed markedly from CMV, This virus, which is designated herein as passion fruit woodiness virus (PWV), has flexuous rod-shaped particles about 670 mµ in length. PWV was shown to be stylet-borne by the aphid Myzus persicae and to be transmitted to Phaseolus vulgaris and Sesbania exaltata by sap inoculation. The physical properties of PWV were determined, and two isolates of the virus were purified and antisera prepared against them.


2019 ◽  
Vol 13 ((03) 2019) ◽  
pp. 465-471 ◽  
Author(s):  
Edilândia Farias Dantas ◽  
Ana Dolores Santiago de Freitas ◽  
Maria do Carmo Catanho Pereira de Lyra ◽  
Carolina Etienne de Rosália e Silva Santos ◽  
Stella Jorge de Carvalho Neta ◽  
...  

Green manures can replace or supplement mineral fertilization and add organic matter to the soils, ensuring greater sustainability to fruit growing in semiarid regions. Biological fixation, transfer and balance of nitrogen were determined on an irrigated yellow passion fruit orchard (Passiflora edulis Sims) intercropped separately with three cover crops: sunn hemp, Crotalaria juncea (L.); pigeon pea, Cajanus cajan (L.) Mill; and jack bean, Canavalia ensiformis (L.) DC. In a fourth treatment, legumes were not planted, but spontaneous vegetation was left to grow freely. The legumes were croped for 90 days in three lines (0.5 m apart) inside the passion fruit plant lines (2.5 m apart). Fixation and transfers were determined by the 15N natural abundance technique, using sunflower as a reference plant. The three planted legumes nodulated abundantly and fixed nitrogen in high proportions (between 50 and 90% of their N), forming symbiosis with bacteria naturally established in the soil. Jack bean produced more biomass than sunn hemp and pigeon pea, and as much as the spontaneous plants, of which 23% were legumes. The amounts of fixed N (150, 43, 30 and 29 kg ha-1) were determined mainly by the biomass of legumes. More than 40% of the N of passion fruit plants came from the biological nitrogen fixation of the intercropped jack bean, which provided an amount of N higher than that exported in the fruits, generating a positive balance of more than 100 kg ha-1. Therefore, it is recommended to intercrop jack bean in irrigated passion fruit orchards.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 144
Author(s):  
Nohra Castillo Rodríguez ◽  
Xingbo Wu ◽  
María Isabel Chacón ◽  
Luz Marina Melgarejo ◽  
Matthew Wohlgemuth Blair

Orphan crops, which include many of the tropical fruit species used in the juice industry, lack genomic resources and breeding efforts. Typical of this dilemma is the lack of commercial cultivars of purple passion fruit, Passiflora edulis f. edulis, and of information on the genetic resources of its substantial semiwild gene pool. In this study, we develop single-nucleotide polymorphism (SNP) markers for the species and show that the genetic diversity of this fruit crop has been reduced because of selection for cultivated genotypes compared to the semiwild landraces in its center of diversity. A specific objective of the present study was to determine the genetic diversity of cultivars, genebank accession, and landraces through genotyping by sequencing (GBS) and to conduct molecular evaluation of a broad collection for the species P. edulis from a source country, Colombia. We included control genotypes of yellow passion fruit, P. edulis f. flavicarpa. The goal was to evaluate differences between fruit types and compare landraces and genebank accessions from in situ accessions collected from farmers. In total, 3820 SNPs were identified as informative for this diversity study. However, the majority distinguished yellow and purple passion fruit, with 966 SNPs useful in purple passion fruits alone. In the population structure analysis, purple passion fruits were very distinct from the yellow ones. The results for purple passion fruits alone showed reduced diversity for the commercial cultivars while highlighting the higher diversity found among landraces from wild or semi-wild conditions. These landraces had higher heterozygosity, polymorphism, and overall genetic diversity. The implications for genetics and breeding as well as evolution and ecology of purple passion fruits based on the extant landrace diversity are discussed with consideration of manual or pollinator-assisted hybridization of this species.


2013 ◽  
Vol 36 (5) ◽  
pp. 845-849 ◽  
Author(s):  
Hiroko Maruki-Uchida ◽  
Ikuko Kurita ◽  
Kenkichi Sugiyama ◽  
Masahiko Sai ◽  
Kazuhisa Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document