scholarly journals Single nucleotide polymorphisms at 15 codons of the prion protein gene from a scrapie-affected herd of Suffolk sheep in Brazil

2011 ◽  
Vol 31 (10) ◽  
pp. 893-898 ◽  
Author(s):  
Caroline Pinto de Andrade ◽  
Laura Lopes de Almeida ◽  
Luiza Amaral de Castro ◽  
Juliano Souza Leal ◽  
Sergio Ceroni da Silva ◽  
...  

Scrapie is a transmissible spongiform encephalopathy of sheeps and goats, associated with the deposition of a isoform of the prion protein (PrPsc). This isoform presents an altered conformation that leads to aggregation in the host's central nervous and lymphoreticular systems. Predisposition to the prion agent infection can be influenced by specific genotypes related to mutations in amino acids of the PrPsc gene. The most characterized mutations occur at codons 136, 154 and 171, with genotypes VRQ being the most susceptible and ARR the most resistant. In this study we have analyzed polymorphisms in 15 different codons of the PrPsc gene in sheeps from a Suffolk herd from Brazil affected by an outbreak of classical scrapie. Amplicons from the PrPsc gene, encompassing the most relevant altered codons in the protein, were sequenced in order to determine each animal's genotype. We have found polymorphisms at 3 of the 15 analyzed codons (136, 143 and 171). The most variable codon was 171, where all described alleles were identified. A rare polymorphism was found at the 143 codon in 4% of the samples analyzed, which has been described as increasing scrapie resistance in otherwise susceptible animals. No other polymorphisms were detected in the remaining 12 analyzed codons, all of them corresponding to the wild-type prion protein. Regarding the risk degree of developing scrapie, most of the animals (96%) had genotypes corresponding to risk groups 1 to 3 (very low to moderate), with only 4% in the higher risks group. Our data is discussed in relation to preventive measures involving genotyping and positive selection to control the disease.

2007 ◽  
Vol 81 (8) ◽  
pp. 4305-4314 ◽  
Author(s):  
Gregory J. Raymond ◽  
Lynne D. Raymond ◽  
Kimberly D. Meade-White ◽  
Andrew G. Hughson ◽  
Cynthia Favara ◽  
...  

ABSTRACT In vitro screening using the cell-free prion protein conversion system indicated that certain rodents may be susceptible to chronic wasting disease (CWD). Therefore, CWD isolates from mule deer, white-tailed deer, and elk were inoculated intracerebrally into various rodent species to assess the rodents' susceptibility and to develop new rodent models of CWD. The species inoculated were Syrian golden, Djungarian, Chinese, Siberian, and Armenian hamsters, transgenic mice expressing the Syrian golden hamster prion protein, and RML Swiss and C57BL10 wild-type mice. The transgenic mice and the Syrian golden, Chinese, Siberian, and Armenian hamsters had limited susceptibility to certain of the CWD inocula, as evidenced by incomplete attack rates and long incubation periods. For serial passages of CWD isolates in Syrian golden hamsters, incubation periods rapidly stabilized, with isolates having either short (85 to 89 days) or long (408 to 544 days) mean incubation periods and distinct neuropathological patterns. In contrast, wild-type mouse strains and Djungarian hamsters were not susceptible to CWD. These results show that CWD can be transmitted and adapted to some species of rodents and suggest that the cervid-derived CWD inocula may have contained or diverged into at least two distinct transmissible spongiform encephalopathy strains.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2574
Author(s):  
Sae-Young Won ◽  
Yong-Chan Kim ◽  
Kyoungtag Do ◽  
Byung-Hoon Jeong

Prion disease is a fatal infectious disease caused by the accumulation of pathogenic prion protein (PrPSc) in several mammals. However, to date, prion disease has not been reported in horses. The Sho protein encoded by the shadow of the prion protein gene (SPRN) plays an essential role in the pathomechanism of prion diseases. To date, the only genetic study of the equine SPRN gene has been reported in the inbred horse, Thoroughbred horse. We first discovered four SPRN single nucleotide polymorphisms (SNPs) in 141 Jeju and 88 Halla horses by direct DNA sequencing. In addition, we found that the genotype, allele and haplotype frequencies of these SNPs of Jeju horses were significantly different from those of Halla and Thoroughbred horses, this latter breed is also included in this study. Furthermore, we observed that the minimum free energy and mRNA secondary structure were significantly different according to haplotypes of equine SPRN polymorphisms by the RNAsnp program. Finally, we compared the SNPs in the coding sequence (CDS) of the SPRN gene between horses and prion disease-susceptible species. Notably, prion disease-susceptible animals had polymorphisms that cause amino acid changes in the open reading frame (ORF) of the SPRN gene, while these polymorphisms were not found in horses.


2018 ◽  
Vol 38 (4) ◽  
pp. 624-628
Author(s):  
Caroline P. Andrade ◽  
José D. Barbosa Neto ◽  
David Driemeier

ABSTRACT: Scrapie is a transmissible spongiform encephalopathy (TSE) that affects sheep and goats and results from accumulation of the abnormal isoform of a prion protein in the central nervous system. Resistance or susceptibility to the disease is dependent on several factors, including the strain of infecting agent, the degree of exposure, and the presence of single nucleotide polymorphisms (SNPs) in the prion protein gene. The most important polymorphisms are present in codons 136, 154, and 171. SNPs have also been identified in other codons, such as 118, 127, 141, 142, and 143. The objective of this study was to investigate the genotypic profile of Santa Ines (n=94) and Dorset (n=69) sheep and identify polymorphisms in the prion protein gene using real-time PCR techniques and sequencing. We analyzed SNPs in 10 different codons (127, 136, 138, 140, 141, 142, 143, 154, 171, and 172) in Santa Ines sheep. Classification of the flock into risk groups associated with scrapie revealed that approximately 68% of the Santa Ines herd was considered at moderate risk (group 3), and the most frequent haplotype was ARQ/ARQ (47.8%). For Dorset sheep, 42% of the herd was considered at moderate risk (group 3), 40% at low risk (group 2), and 12% at very low risk (group 1). These findings improve our understanding of the genotype breed and further highlight the importance of genotyping and identification of polymorphisms in Brazilian herds to assess their effects on potential infections upon exposure to the sheep prion.


2005 ◽  
Vol 12 (4) ◽  
pp. 324-326 ◽  
Author(s):  
Liping Meng ◽  
Deming Zhao ◽  
Hongxiang Liu ◽  
Jianmin Yang ◽  
Zhangyong Ning

2002 ◽  
Vol 52 (3) ◽  
pp. 355-359 ◽  
Author(s):  
Ayush Dagvadorj ◽  
Robert B. Petersen ◽  
Hee Suk Lee ◽  
Larisa Cervenakova ◽  
Alexey Shatunov ◽  
...  

2012 ◽  
Vol 60 (2) ◽  
pp. 233-243
Author(s):  
Stanislav Hreško ◽  
Ľudmila Tkáčiková

This study was conducted to investigate the presence of single nucleotide polymorphisms (SNPs) in the coding region of the bovine prion protein (PrP) gene among healthy and bovine spongiform encephalopathy (BSE-) affected cattle in Slovakia. Denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism (SSCP) followed by DNA sequencing were used to identify SNPs and variations in octapeptide repeats. Altogether three single nucleotide polymorphisms (g234a, c339t and c576t) and variations in the number of octapeptide repeat units (5 or 6) were found in the analysed part of the prion protein gene. All single nucleotide polymorphisms were silent, causing no amino acid changes. Significant differences (P < 0.05) in the genotype distribution of g234a polymorphism were observed when the homozygous genotype with a mutated allele (caa/caa) was compared to the heterozygous genotype -/cag among healthy and BSE-affected cattle. The homozygous genotype caa/caa was characteristic of the group of BSE-affected cattle. Additionally, the homozygous genotype caa/caa was significant for the group of Simmental crossbreeds among healthy cattle. The allele and genotype distribution of the other polymorphisms was not significantly different among groups of healthy and BSE-affected cattle. The possible influence of a silent mutation on expression of the gene is not clearly determined and needs further investigations.


2004 ◽  
Vol 78 (12) ◽  
pp. 6243-6251 ◽  
Author(s):  
Thierry Baron ◽  
Carole Crozet ◽  
Anne-Gaëlle Biacabe ◽  
Sandrine Philippe ◽  
Jérémie Verchere ◽  
...  

ABSTRACT The existence of different strains of infectious agents involved in scrapie, a transmissible spongiform encephalopathy (TSE) of sheep and goats, remains poorly explained. These strains can, however, be differentiated by characteristics of the disease in mice and also by the molecular features of the protease-resistant prion protein (PrPres) that accumulates into the infected tissues. For further analysis, we first transmitted the disease from brain samples of TSE-infected sheep to ovine transgenic [Tg(OvPrP4)] and to wild-type (C57BL/6) mice. We show that, as in sheep, molecular differences of PrPres detected by Western blotting can differentiate, in both ovine transgenic and wild-type mice, infection by the bovine spongiform encephalopathy (BSE) agent from most scrapie sources. Similarities of an experimental scrapie isolate (CH1641) with BSE were also likewise found following transmission in ovine transgenic mice. Secondly, we transmitted the disease to ovine transgenic mice by inoculation of brain samples of wild-type mice infected with different experimental scrapie strains (C506M3, 87V, 79A, and Chandler) or with BSE. Features of these strains in ovine transgenic mice were reminiscent of those previously described for wild-type mice, by both ratios and by molecular masses of the different PrPres glycoforms. Moreover, these studies revealed the diversity of scrapie strains and their differences with BSE according to labeling by a monoclonal antibody (P4). These data, in an experimental model expressing the prion protein of the host of natural scrapie, further suggest a genuine diversity of TSE infectious agents and emphasize its linkage to the molecular features of the abnormal prion protein.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 518
Author(s):  
Sae-Young Won ◽  
Yong-Chan Kim ◽  
Kyoungtag Do ◽  
Byung-Hoon Jeong

Prion disease is a fatal neurodegenerative disorder caused by a deleterious prion protein (PrPSc). However, prion disease has not been reported in horses during outbreaks of transmissible spongiform encephalopathies (TSEs) in various animals in the UK. In previous studies, single nucleotide polymorphisms (SNPs) in the prion protein gene (PRNP) have been significantly associated with susceptibility to prion disease, and strong linkage disequilibrium (LD) between PRNP and prion-like protein gene (PRND) SNPs has been identified in prion disease-susceptible species. On the other hand, weak LD values have been reported in dogs, a prion disease-resistant species. In this study, we investigated SNPs in the PRND gene and measured the LD values between the PRNP and PRND SNPs and the impact of a nonsynonymous SNP found in the horse PRND gene. To identify SNPs in the PRND gene, we performed direct sequencing of the PRND gene. In addition, to assess whether the weak LD value between the PRNP and PRND SNPs is a characteristic of prion disease-resistant animals, we measured the LD value between the PRNP and PRND SNPs using D’ and r2 values. Furthermore, we evaluated the impact of a nonsynonymous SNP in the Doppel protein with PolyPhen-2, PROVEAN, and PANTHER. We observed two novel SNPs, c.331G > A (A111T) and c.411G > C. The genotype and allele frequencies of the c.331G > A (A111T) and c.411G > C SNPs were significantly different between Jeju, Halla, and Thoroughbred horses. In addition, we found a total of three haplotypes: GG, AG, and GC. The GG haplotype was the most frequently observed in Jeju and Halla horses. Furthermore, the impact of A111T on the Doppel protein was predicted to be benign by PolyPhen-2, PROVEAN, and PANTHER. Interestingly, a weak LD value between the PRNP and PRND SNPs was found in the horse, a prion disease-resistant animal. To the best of our knowledge, these results suggest that a weak LD value could be one feature of prion disease-resistant animals.


2016 ◽  
Vol 91 (2) ◽  
Author(s):  
Karen E. Marshall ◽  
Andrew Hughson ◽  
Sarah Vascellari ◽  
Suzette A. Priola ◽  
Akikazu Sakudo ◽  
...  

ABSTRACT Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrPC) influences PrPC misfolding into the disease-associated isoform, PrPres, as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrPC away from rafts. Previous studies showed that nonraft transmembrane PrPC variants resist conversion to PrPres when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrPC and GPI-anchored PrPres in distinct membrane environments. Thus, it remained unclear whether transmembrane PrPC might convert to PrPres if seeded by an exogenous source of PrPres not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrPC. To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrPC supported persistent PrPres propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrPC is required for persistent PrPres propagation, implicating raft microdomains as a location for conversion. IMPORTANCE Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrPC) directs it to specific regions of cell membranes called rafts. In order to test the importance of the raft environment on prion propagation, we developed a novel model for prion infection where cells expressing either GPI-anchored PrPC or transmembrane-anchored PrPC, which partitions it to a different location, were treated with infectious, misfolded forms of the prion protein, PrPres. We show that only GPI-anchored PrPC was able to convert to PrPres and able to serially propagate. The results strongly suggest that GPI anchoring and the localization of PrPC to rafts are crucial to the ability of PrPC to propagate as a prion.


2007 ◽  
Vol 88 (4) ◽  
pp. 1374-1378 ◽  
Author(s):  
G. C. Saunders ◽  
P. C. Griffiths ◽  
S. Cawthraw ◽  
A. C. Tout ◽  
P. Wiener ◽  
...  

Polymorphisms of the prion protein gene are associated with differing susceptibilities to transmissible spongiform encephalopathy diseases, as shown for variant Creutzfeldt–Jakob disease in humans and scrapie in sheep, but not yet in cattle. Imposition of control measures in the UK, including a reinforced ruminant feed ban in 1996, has led to a reduction in the incidence of bovine spongiform encephalopathy (BSE). BSE-affected cattle born after 1996 in Great Britain have been termed born-after-the-reinforced-ban (BARB) cases. In this study, the PrP gene coding region from 100 BARB BSE cases and 66 matched healthy-control cattle was sequenced to investigate whether this would reveal a genetic basis to their origin. Polymorphisms identified were not found to be associated with increased susceptibility to BSE in the BARB cases. Analysis of BARB cases grouped either by clinical status or by whether they formed an isolated or clustered case was also undertaken, but differences were not found to be significant.


Sign in / Sign up

Export Citation Format

Share Document