scholarly journals Interference of GR® Volunteer Corn Population and Origin on Soybean Grain Yield Losses

2018 ◽  
Vol 36 (0) ◽  
Author(s):  
C. PIASECKI ◽  
M.A. RIZZARDI ◽  
D.P. SCHWADE ◽  
M. TRES ◽  
J. SARTORI

ABSTRACT: The cultivation of GR® maize prior to soybean, mainly in the no-tillage system favors the higher occurrence of GR® volunteer corn interfering in soybean crops. Volunteer corn originate from seeds that were lost during harvest or from non-harvested seeds from the field; these are individual seeds, originating individual plants, or several seeds adhered to segments of the rachis, which originate clumps. Volunteer corn in the form of clumps predominates in soybean crops, but little information about its effect on soybean is available in the literature. During two years, three experiments were carried out with the objective of evaluate the impact of the interference of GR® F2 generation volunteer corn populations coming from individual and clump seeds (seven corn plants emerged at the same point) over soybean yield components and grain yield. The results show that losses in soybean yield components and grain yield are influenced by the population and origin of volunteer corn. Clumps cause losses over 90% for populations above four clumps m-2, while the mean maximum loss observed for individual plants was 83% in the largest studied populations. Soybean yield decreased significantly when competing with populations below one plant or clump m-2, being 16% and 46% in the population of 0.5 individual plant and clump m-2, respectively.

2019 ◽  
Vol 37 ◽  
Author(s):  
M.A. RIZZARDI ◽  
C. PIASECKI ◽  
J. SCHONS ◽  
A. CAVERZAN ◽  
C. LANGARO

ABSTRACT: Volunteer corn occurrence with soybean is favored by the glyphosate-resistant (GR) corn cultivation preceding soybean and no-tillage systems. Volunteer corn interference causes significant losses in soybean grain yield. The levels of crop losses change with the corn density, origin, and time of emergence. High levels of weed interference in crops can result in the production of reactive oxygen species and lead to the occurrence of oxidative stress. The objectives of this study were to evaluate the effects of interference of (1) different origins (individual plants and clumps) and times of emergence of volunteer corn on soybean growth, yield components, and grain yield loss; and (2) if the volunteer corn interference causes oxidative stress in soybean. Field experiment and laboratory analyses were performed. The evaluated variables were soybean yield components, grain yield, hydrogen peroxide - H2O2 content, and antioxidant enzyme superoxide dismutase - SOD, catalase - CAT, and ascorbate peroxidase - APX activities. Volunteer corn interference reduced the yield components and soybean yield. The highest yield losses were observed with volunteer corn clumps regarding individual plants. The interference of volunteer corn emerged 10 days before or on the same day as soybean caused the greater yield losses than those emerged 10 days after, independently of its origin. The content of H2O2 and enzyme SOD, CAT and APX activities changed in soybean leaves in response to the interference of volunteer corn plants and clumps. However, the results indicate that the volunteer corn interferences does not cause oxidative stress in soybean.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
C. PIASECKI ◽  
M.A. RIZZARDI

ABSTRACT: Volunteer corn is extremely competitive with soybean and the degree of interference varies with the corn density, time of emergence and origin. The objectives of this work were to determine the economic threshold (ET) of volunteer corn GR® F2 in soybean as a function of the time of emergence (same day and nine days after soybean) and origin (individual plants or clumps). Each clump was manually adjusted to have seven corn plants. Four field experiments were conducted in randomized blocks design with four replicates in Passo Fundo, RS, Brazil. The soybean yield losses (%) were calculated and adjusted to the model of the rectangular hyperbola and generated the parameters for the determination of the ET, that was calculated based on the volunteer corn control costs (US$ ha-1), efficiency of control (%), price paid for soybean (US$ kg-1) and soybean yield (kg ha-1). The ET mean was 0.3 and 0.48 for individual corn plants m-2 emerged together and nine days after soybean, and 0.08 and 0.03 m-2 for individual plants and clumps, respectively. Increases in grain yield and price paid for soybean, greater control efficiency of corn and lower control cost promote reduction in the ET of volunteer corn in soybean. The control of volunteer corn is justified in a density less than 0.5 individual plant m-2 and is close to zero when corn originates from clumps. Volunteer corn is one of the most competitive weed in soybean crops.


2021 ◽  
Vol 37 ◽  
pp. e37042
Author(s):  
Marcelo De Almeida Silva ◽  
Ana Carolina De Santana Soares ◽  
Melina Rodrigues Alves Carnietto ◽  
Alexandrius De Moraes Barbosa

Studies addressing the interaction of different spatial arrangement in soybean are needed in order to achieve management that leads to higher grain yield associated with rational seed use. The objective of this work was to evaluate the yield components and productivity of an undetermined growth type soybean as a function of different row spacing and plant densities. The treatments consisted of three row spaces (0.25, 0.35 and 0.45 m) and three plant population densities (30, 40 and 50 plants/m²). There was no interaction of row spaces and plant population on soybean yield. Regarding the overall spacing average, the grain yield of the population of 30/m² plants was higher than the productivity of the populations of 40 and 50/m² plants. The largest populations reduce plant sizes due to greater competition between plants. In addition, smaller populations promote higher individual plant yields due to the increase components of the production. This characteristic is defined as the ability of the plant to change its morphology and yield components in order to adapt to the conditions imposed by the spatial arrangement.


Weed Science ◽  
2012 ◽  
Vol 60 (2) ◽  
pp. 193-198 ◽  
Author(s):  
P. Marquardt ◽  
C. Krupke ◽  
W. G. Johnson

Glyphosate-resistant (GR) volunteer corn has emerged as a problematic weed in corn:soybean rotational systems, partly because of the rapid increase in adoption of corn hybrids that contain traits for both glyphosate and insect resistance. Volunteer GR corn can decrease soybean yields. The objectives of this study were to quantify the impact of volunteer corn on soybean growth and yield and determine how volunteer corn densities affect western corn rootworm (WCR) emergence. Volunteer corn seed was hand-planted at targeted densities of 0.5, 2, 4, 8, 12, and 16 seeds m−2at soybean planting and 21 d after planting to evaluate both early- and late-emerging cohorts. WCR emergence was assessed with the use of field emergence traps placed over individual corn plants in the 0.5- and 16-plants-m−2plots in 2008 and 2009. In 2010, WCR emergence traps were also placed over individual and clumped volunteer corn plants at densities of two and eight plants m−2. Soybean yield reductions ranged from 10 to 41% where early-emerging volunteer corn densities ranged from 0.5 to 16 plants m−2. No soybean yield loss occurred with the late-emerging cohort of volunteer corn. Twice as many adult WCRs emerged from a single volunteer corn plant growing at densities of 8 and 16 plants m−2, compared with plots containing 0.5 and 2 plants m−2. These results demonstrate that controlling volunteer corn will not only prevent soybean yield loss, but also may reduce the risk of WCR larval survival after exposure to Bt (Bacillus thuringiensisBerliner derived) corn.


2018 ◽  
Vol 48 (4) ◽  
pp. 476-485
Author(s):  
Sérgio Ricardo Lima Negro ◽  
Diego dos Santos Pereira ◽  
Rafael Montanari ◽  
Flávio Carlos Dalchiavon ◽  
Christtiane Fernandes Oliveira

ABSTRACT The spatial variability of soil physical attributes is important to indicate management practices that best suit agricultural areas. This study aimed to analyze spatial correlations between soybean grain yield and soil mass-volume relationships, in order to select which attribute is correlated with yield, as well as to evaluate the spatial variability of soil attributes and yield components of this crop, in an Oxisol under no-tillage system. The soil attributes analyzed (0.0-0.10 m and 0.10-0.20 m) were the following ones: soil bulk density (paraffin-coated clod and volumetric ring methods), particle density (volumetric flask and modified volumetric flask methods) and total porosity. The soybean yield components were evaluated as it follows: grain yield, number of pods per plant, number of grains per pod, mass of 100 grains, grain mass per plant, plant population and plant height. The total soil porosity, calculated by the relations between the bulk density (volumetric ring method) and particle density (volumetric flask), in the 0.10-0.20 m layer, was the best indicator of soybean grain yield under no-tillage conditions.


1986 ◽  
Vol 37 (3) ◽  
pp. 219 ◽  
Author(s):  
WK Anderson

Eight spring bread wheat cultivars (Triticum aestivum L.), differing widely in their nominal yield component characteristics, were tested under rain-fed conditions for three years at sowing densities ranging from 50 to 800 seeds m-2. The objectives of the experiments were to estimate the relationship between grain yield and particular yield components, the expression of plant type (yield components) in relation to plant density, and the plant population x cultivar interaction for grain yield over a range of seasons in a given environment. The 'optimum' plant population (at maximum grain yield) varied over 30-220 plants m-2, depending on season and cultivar. In general, variation in the 'optimum' population was greater between seasons for a given cultivar than between cultivars within seasons. The relationship between grain yield and yield components was examined at the 'optimum' population rather than at an arbitrary population at which grain yield may have been suboptimal for some cultivars or seasons. Grain yields at the optimum populations for the various cultivar x season combinations were positively related to culms m-2, spikes m-2 and seeds m-2. They were not clearly related to culm mortality (%). When averaged across seasons, cultivar grain yields were positively related to harvest index, but the general relationship was not so clear when seasons and cultivars were examined individually. Spike size (seeds spike-I or spike weight) and seed size were also not clearly related to grain yield at the 'optimum' population, and it was thus postulated that the production and survival of large numbers of culms, which in turn led to large numbers of seeds per unit area, were the source of large grain yields. Some interactions were found between yield components and plant population for some cultivars that could have implications for plant breeders selecting at low plant densities. The implications for crop ideotypes of the individual plant characters at the 'optimum' population are also discussed. Interactions between cultivars and plant populations implied that some cultivars required different populations to achieve maximum yields in some seasons. There was a tendency for larger yields to be achieved from cultivar x season combinations where the optimum population was larger, which suggested that commercial seed rates should be re-examined when changes to plant types or yield levels are made.


2019 ◽  
Vol 37 ◽  
Author(s):  
L.B.P. BRAZ ◽  
G.B.P. BRAZ ◽  
S.O. PROCÓPIO ◽  
C.J.B. FERREIRA ◽  
A.G. SILVA ◽  
...  

ABSTRACT: The presence of volunteer corn plants in coexistence with soybean has been increasing since the introduction of glyphosate-resistant corn hybrids. This study aimed to evaluate the effect of interference of volunteer RR® corn plants at different densities on two RR® soybean cultivars. The experiment was conducted in Rio Verde, GO. The experimental design was a randomized block design in a factorial arrangement (2×5), with four replications. Factor A consisted of two soybean cultivars (BMX Potência RR® and M8210 IPRO®), while five densities of RR® corn plants per m2 (0, 4, 8, 12, and 16) were adopted for factor B. The following evaluations were carried out for soybean: plant height, SPAD index, percentage of interrow closure, shoot dry matter, first pod height, number of pods per plant, 100 grain weight, and grain yield of grains. Soybean plant height presented a linear and positive relationship with the increased density of corn plants. Shoot dry matter, 100 grain weight, number of pods per plant, and grain yield were negatively affected by the increased density of volunteer corn infestation. The soybean cultivar M8210 IPRO® was more susceptible to corn plant interference when compared to the cultivar BMX Potência RR®.


2016 ◽  
Vol 9 (1) ◽  
pp. 24 ◽  
Author(s):  
Lukman Hakim

Information on the variability and correlation between agronomic characters of mungbean accessions with their yield are important for supporting breeding program of the plant. A total of 350 mungbean accessions were evaluated at Muara Experimental Farm, Indonesian Center for Food Crops Research and Development, Bogor, during the dry season of 2005. The experiment was conducted in a completely randomized block design with three replications. Each accession was planted in two rows of 5 m long. Plant spacing was 40 cm x 20 cm, two plants per hill. Correlation and path coefficient analyses were used to quantify<br />the magnitude of the relationship between yield components and grain yield. The variability among the accessions was significant for most of the characters studied, especially for days to maturity, plant height, pods per plant, and seed size. Among the yield components, the number of pods per plant and plant height positively correlated with the grain yield, but the<br />seed size negatively correlated with grain yield. The direct effects of the number of pods per plant and plant height on seed yield as indicated by path coefficient were the highest, while other causal effects were small or negative. Yield variation (1- R2) attributable to the nine yield component variables was slightly high (61.23%), which means that mungbean accessions with high grain yield should have sufficient plant height and high number of pods per plant. Therefore, these parameters (number of pods per plant and plant height) can be used as the selection criteria in mungbean breeding program. These criteria can be visualized during bulk selection on the early generation stage of F2 to F4, and subsequently on line development of individual plant (pedigree) of F5.


2019 ◽  
Vol 11 (10) ◽  
pp. 264
Author(s):  
Ana Paula Rockenbach ◽  
Mauro Antônio Rizzardi ◽  
Adriana Favaretto ◽  
Theodoro Schneider ◽  
Andréa Michel Sobottka

The objective of this study was to evaluate changes in soybean secondary metabolism and soybean yield components when subjected to coexistence periods with volunteer corn and established horseweed (Conyza spp.) regrowth. Two field experiments were conducted in the agricultural years 2015/2016 and 2016/2017 at Passo Fundo University, Passo Fundo, Rio Grande do Sul, Brazil. Experiment I was conducted in the agricultural year 2015/2016 in order to establish periods of coexistence between soybean and corn. The treatments consisted of two soybean densities in the main plots (175,000 and 350,000 plants ha-1) and different periods of coexistence between soybean and corn in the subplots. Experiment II was conducted in the agricultural year of 2016/2017 in order to investigate the interference of regrowth horseweed during coexistence periods with soybean. The total phenols, flavonoids, saponins, soybean yield components and seed yields were evaluated. Volunteer corn that initiates growth after the V4 soybean stage and horseweed regrowth during cultivation do not adversely affect secondary metabolism, seed yield or soybean yield components.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
C. PIASECKI ◽  
M.A. RIZZARDI ◽  
J. SCHONS ◽  
A. CAVERZAN ◽  
G. CHAVARRIA

ABSTRACT: The cultivation of GR® corn prior to soybean favors the occurrence of GR® volunteer corn plants interfering in soybean crops. The interference of volunteer corn causes the soybean yield losses, and the magnitude of losses varies with the corn density. The soybean yield losses can be partially explained by the occurrence of oxidative stress, which occurs by the higher content of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). The objective of this study was to quantify H2O2 content and the activity of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) on soybean as a function of interference of populations of GR® volunteer corn originated from individual plants and clumps (clumps are seven corn plants emerged at the same point) in different times, as well as to determine wheter this interference alters stress metabolism on soybean. Quantification was performed at 20, 35 and 46 days after emergence (DAE) of soybean. The mean volunteer corn populations were 0, 0.5, 1, 2, 4, 8, 10 and 12 plants or clumps m-2. The results show changes in H2O2 content and SOD, CAT and APX activity as a response to interference with volunteer corn populations and origins. The higher activity was observated for SOD. Soybean yield reduce with the increase of populations of volunteer corn originated from individual plants and clumps.


Sign in / Sign up

Export Citation Format

Share Document