scholarly journals Shear bond strength of dental porcelains to nickel-chromium alloys

2005 ◽  
Vol 16 (3) ◽  
pp. 202-206 ◽  
Author(s):  
Ricardo Alves do Prado ◽  
Heitor Panzeri ◽  
Alfredo Julio Fernandes Neto ◽  
Flávio Domingues das Neves ◽  
Marlete Ribeiro da Silva ◽  
...  

The continuous technological advance and increasing availability of new base metal alloys and ceramic systems in the market, coupled to the demands of daily clinical practice, have made the constant evaluation of the bond strength of metal/porcelain combinations necessary. This study evaluated the metal/porcelain shear bond strength of three ceramic systems (Duceram, Williams and Noritake) in combination with three nickel-chromium (Ni-Cr) alloys (Durabond, Verabond and Viron). Thirty cast cylinder specimens (15 mm high; 6 mm in diameter) were obtained for each alloy, in a way that 10 specimens of each alloy were tested with each porcelain. Bond strength was measured with an Emic screw-driven mechanical testing machine by applying parallel shear forces to the specimens until fracture. Shear strength was calculated using the ratio of the force applied to a demarcated area of the opaque layer. Mann-Whitney U test was used for statistical analysis of the alloy/ceramic combinations (p<0.05). Viron/Noritake had the highest shear bond sregnth means (32.93 MPa), while Verabond/Duceram (16.31 MPa) presented the lowest means. Viron/Noritake differed statistically from other combinations (p<0.05). Viron/Duceram had statistically significant higher bond strengths than Verabond/Duceram, Verabond/Williams and Durabond/Noritake (p<0.05). It was also found significant difference (p<0.05) between Verabond/Noritake, Verabond/Duceram and Durabond/Noritake. No statistically significant difference (p>0.05) were observed among the other combinations. In conclusion, the Noritake ceramic system used together with Viron alloy presented the highest resistance to shear forces, while Duceram bonded to Verabond presented the lowest bond strength. Viron/Duceram and Verabond/Noritake provided intermediate results. The combinations between the Williams ceramic system and Ni-Cr alloys had similar shear strengths among each other.

2014 ◽  
Vol 15 (6) ◽  
pp. 688-692 ◽  
Author(s):  
Sukumaran Anil ◽  
Farouk Ahmed Hussein ◽  
Mohammed Ibrahim Hashem ◽  
Elna P Chalisserry

ABSTRACT Objective The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Subjects and methods Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. Results No statistically significant difference was found in bond strengths’ values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. Conclusion The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength. How to cite this article Hussein FA, Hashem MI, Chalisserry EP, Anil S. The Impact of Chlorhexidine Mouth Rinse on the Bond Strength of Polycarbonate Orthodontic Brackets. J Contemp Dent Pract 2014;15(6):688-692.


2007 ◽  
Vol 77 (6) ◽  
pp. 1096-1100 ◽  
Author(s):  
Hakan Türkkahraman ◽  
Necdet Adanir

Abstract Objective: To evaluate the effects of potassium nitrate and oxalate desensitizer agents on shear bond strengths of orthodontic brackets. Materials and Methods: Forty-five extracted human premolar teeth were randomly assigned to three groups of 15 each. UltraEZ potassium nitrate desensitizer was applied on teeth in the first group, while BisBlock oxalate desensitizer was applied on teeth in the second group. The third group served as a control. Orthodontic brackets were bonded with a light cure composite resin and cured with a halogen light. After bonding, the shear bond strength of the brackets was tested with a universal testing machine. Results: The highest shear bond strengths were measured in Group III. The shear bond strength in Groups I and II was significantly lower than in Group III (P &lt; .001). Significant difference was also found between Group I and Group II (P &lt; .01). Conclusions: Orthodontic brackets bonded to enamel treated with potassium nitrate and oxalate desensitizers showed significantly lower bond strengths than did brackets bonded to untreated enamel.


2019 ◽  
Vol 9 (1) ◽  
pp. 11-14
Author(s):  
Vivek Bikram Thapa ◽  
Amrita Shrestha ◽  
Prabesh Sherchan ◽  
Prakash Poudel ◽  
Luna Joshi

 Introduction: Direct and indirect bonding has revolutionized clinical orthodontics by reducing chair-side time and enhancing patient comfort. Clinicians often hesitate to bond molars due to ambiguity on shear bond strength. This study was conducted to compare shear bond strengths of two commercially available bondable molar tubes. And asses mesh if the mesh design had a role to play in differences in shear bond strength. Materials & Method: 30 extracted maxillary molars were divided into Group I and II (n=15).Group I bonded with Victory series MBT (3M Unitek). And Group II bonded with Ortho classic proprietary Pad- Lok (Navy orthodontics). Teeth were mounted on a jig and Shear Bond Strength was evaluated on an Instron universal testing machine at a cross head speed of 1mm/minute. They were also subjected to scanning microscopic examination to check the base pattern. Result: Shear bond strength of navy orthodontic tubes were (18.0675+/- 4.0187 MPa) was significantly higher than 3M victory series (8.93 +/2.493MPa). Unpaired T-test shows a higher significant difference in SBS between two groups at 1% of significance. SME showed that navy orthodontic tube base was pad-lock mesh design, while 3M was a single mesh base design. Conclusion: 3M victory series molar tube exhibited a near ideal while other sample showed far higher shear bond strength than recommended. Higher values may result in enamel fracture.


2019 ◽  
Vol 13 (3) ◽  
pp. 227-233
Author(s):  
Tahereh Ghaffari ◽  
Elnaz Moslehifard ◽  
Mehrnaz Motiei

Background. Due to the fragile nature of all-ceramic restorations, it is necessary to provide an appropriate (core) infrastructure to support the veneering porcelain. The veneer detachment and chipping are disadvantages of these restorations. Several techniques have been proposed to minimize these problems. This study evaluated the effect of thermal and mechanical cycles on the shear bond strength of zirconia core to porcelain veneer under different surface treatments. Methods. Sixty disk-like zirconium samples were randomly divided into three groups. The first group was polished and veneered with porcelain, without additional surface treatments. The two other groups were subjected to different surface treatments (modified aluminum oxide by silica and activator‒aluminum oxide and primer) and veneering with porcelain. Half of the samples in each group were subjected to 6000 thermal cycles and 20,000 masticatory cycles of 50 N to imitate the intraoral conditions; the other half were placed in distilled water at 37°C until the shear strength test. Each sample was then buried using PMMA in a mounting jig so that the gap between the core and the veneer could be placed upward. Then, they were exposed to shear stress using a universal testing machine at a rate of 1 mm/min until fracture. The maximum force leading to the fracture was recorded. Results. Comparison of the groups showed that the highest shear bond strength was related to the samples treated with aluminum oxide and primer, without applying thermal and masticatory cycles, which indicated no significant difference from the group treated with aluminum oxide and primer, with thermal and masticatory cycles. The lowest shear bond strengths were related to the polished samples without surface treatment by applying thermal and masticatory cycles (P=0.001), which indicated no significant difference from the untreated group without thermal and masticatory cycles. Conclusion. Based on the results, treatment with aluminum oxide and primer increased the shear bond strength of zirconia core to porcelain veneer. Thermocycling and masticatory cycles failed to reduce the shear bond strength in all the three groups significantly.


2014 ◽  
Vol 08 (04) ◽  
pp. 498-503 ◽  
Author(s):  
Lucas da Fonseca Roberti Garcia ◽  
Hebert Luis Rossetto ◽  
Fernanda de Carvalho Panzeri Pires-de-Souza

ABSTRACT Objective: To evaluate the shear bond strength of a novel calcium aluminate-based cement, EndoBinder (EB), to dentine in comparison with Grey and White Mineral Trioxide Aggregate (MTA). Materials and Methods: Root canal hemi-sections obtained from 30 extracted molar teeth were embedded in self-polymerized acrylic resin and were grounded wet in order to obtain a flat dentine surface. Next, the roots were randomly assigned into three groups (n = 10), according to the cement used, as follows: EB: EndoBinder; WMTA: White MTA and GMTA: Grey MTA. The shear bond strength test was performed using a Universal Testing Machine (0.5 mm/min) and the data were submitted to statistical analysis (1-way ANOVA and Tukey tests, P < 0.05). Results: EB presented the highest shear bond strength values; however, there was no statistically significant difference in comparison with GMTA (P > 0.05). WMTA presented the lowest mean values, which were significant in comparison with EB (P < 0.05). Conclusions: The novel calcium aluminate-based cement presented higher shear bond strength than WMTA, and should be considered as a promising alternative in endodontic therapy.


2015 ◽  
Vol 26 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Mansour Rismanchian ◽  
Amin Davoudi ◽  
Elham Shadmehr

Connecting prostheses to the implant abutments has become a concern and achieving a satisfactory retention has been focused in cement-retention prostheses recently. Sandblasting is a method to make a roughened surface for providing more retention. The aim of this study was to compare effects of nano and micro airborne abrasive particles (ABAP) in roughening surface of implant abutments and further retention of cemented copings. Thirty Xive abutments and analogues (4.5 D GH1) were mounted vertically in self-cured acrylic blocks. Full metal Ni-Cr copings with a loop on the top were fabricated with appropriate marginal adaptation for each abutment. All samples were divided into 3 groups: first group (MPS) was sandblasted with 50 µm Al2O3 micro ABAP, second group (NSP) was sandblasted with 80 nm Al2O3 nano ABAP, and the third group (C) was assumed as control. The samples were cemented with provisional cement (Temp Bond) and tensile bond strength of cemented copings was evaluated by a universal testing machine after thermic cycling. The t test for independent samples was used for statistical analysis by SPSS software (version 15) at the significant level of 0.05. Final result showed significant difference among all groups (p<0.001) and MPS manifested the highest mean retention (207.88±45.61 N) with significant difference among other groups (p<0.001). The control group showed the lowest bond strength as predicted (48.95±10.44 N). Using nano or micro ABAP is an efficient way for increasing bond strengths significantly, but it seems that micro ABAP was more effective.


2009 ◽  
Vol 03 (03) ◽  
pp. 173-177 ◽  
Author(s):  
Ahmet Yalcin Gungor ◽  
Hakan Turkkahraman ◽  
Necdet Adanir ◽  
Huseyin Alkis

ABSTRACTObjectives: To evaluate the effects fluorosis and self etching primers (SEP) on shear bond strengths (SBS) of orthodontic brackets.Methods: A total of 48 (24 fluorosed and 24 non-fluorosed) non-carious freshly extracted human permanent premolar teeth were used in this study. Fluorosed teeth were selected according to the modified Thylstrup and Fejerskov index (TFI), which is based on the clinical changes in fluorosed teeth. Fluorosed and non-fluorosed teeth were randomly assigned to 4 groups of 12 each. In groups I (non-fluorosed teeth) and II (fluorosed teeth), standard etching protocol was used and brackets were bonded with Light Bond. In groups III (non-fluorosed teeth) and IV (fluorosed teeth), Transbond Plus SEP was used and brackets were bonded with Transbond XT Light Cure Adhesive. All specimens were cured with a halogen light. After bonding, SBS of the brackets were tested with Universal testing machine. After debonding, all teeth and brackets in the test groups were examined under 10x magnifications. Any adhesive remained after debonding was assessed and scored according to the modified Adhesive Remnant Index (ARI).Results: ANOVA indicated a significant difference between groups (P<.001). SBS in group II (Light Bond+Fluorosis) were significantly lower than other groups. ARI scores of the groups were also significantly different (P<.001). There was a greater frequency of ARI scores of 1,2 and 3 in group II (Light Bond+Fluorosis).Conclusions: When standard etching protocol was used enamel fluorosis significantly decreased the bond strength of orthodontic brackets. Satisfactory bond strengths were obtained when SEP was used for bonding brackets to the fluorosed teeth. (Eur J Dent 2009;3:173-177)


2016 ◽  
Vol 10 (01) ◽  
pp. 109-115 ◽  
Author(s):  
Mahendran Kavitha ◽  
Sharmila Selvaraj ◽  
Ambica Khetarpal ◽  
Aruna Raj ◽  
Shakunthala Pasupathy ◽  
...  

ABSTRACT Objective: The aim of this study was to investigate the neutralizer effect of antioxidant agents on the bond strength of bleached enamel. Materials and Methods: Sixty enamel slabs were prepared from 60 freshly extracted maxillary central incisors and were divided into six groups. The negative control group received no bleaching treatment and the other groups were bleached with 35% carbamide peroxide (Opalescence Quick; Ultradent, South Jordan, USA). In Group II, composite was built immediately after bleaching and cured without any antioxidants. In Group III, bleached specimens received composite build ups delayed by 1 week. In Groups IV, V, and VI bleached specimens received applications of superoxide dismutase (SOD), sodium ascorbate (SA), and tocopherol solutions, respectively, for 10 min. Following composite bonding, the micro shear bond strength (μSBS) was measured at a speed of 1 mm/min in universal testing machine. Statistical Analysis Used: The μSBS values of all the groups were analyzed using the analysis of variance followed by Tukey honestly significant difference post-hoc test. Results: Bonding of composites to unbleached group (Group I) exhibited the highest mean SBS values and among the antioxidant-treated groups, the highest SBS values were seen with SOD (Group IV) treated samples (23.0040 ± 4.30565 MPa). Conclusions: Application of SA, alpha-tocopherol, and SOD can effectively reverse the bond strength with bleached enamel. SOD gave a comparatively more promising reversal of bond strength than SA and alpha-tocopherol, and deserves further studies.


2016 ◽  
Vol 10 (01) ◽  
pp. 040-045 ◽  
Author(s):  
Hakan Colak ◽  
Ertugrul Ercan ◽  
Mehmet Mustafa Hamidi

ABSTRACT Objectives: Bulk-fill composite materials are being developed for preparation depths of up to 4 mm in an effort to simplify and improve the placement of direct composite posterior restorations. The aim of our study was to compare shear-bond strength of bulk-fill and conventional posterior composite resins. Materials and Methods: In this study, 60 caries free extracted human molars were used and sectioned parallel to occlusal surface to expose midcoronal dentin. The specimens were randomly divided into four groups. Total-etch dentine bonding system (Adper Scotchbond 1XT, 3M ESPE) was applied to dentin surface in all the groups to reduce variability in results. Then, dentine surfaces covered by following materials. Group I: SonicFill Bulk-Fill, Group II: Tetric EvoCeram (TBF), Group III: Herculite XRV Ultra, and Group IV: TBF Bulk-Fill, 2 mm × 3 mm cylindrical restorations were prepared by using application apparatus. Shear bond testing was measured by using a universal testing machine. Kruskal–Wallis and Mann–Whitney U-tests were performed to evaluate the data. Results: The highest value was observed in Group III (14.42 ± 4.34) and the lowest value was observed in Group IV (11.16 ± 2.76) and there is a statistically significant difference between these groups (P = 0.046). However, there is no statistically significant difference between the values of other groups. In this study, Group III was showed higher strength values. Conclusion: There is a need for future studies about long-term bond strength and clinical success of these adhesive and bulk-fill systems.


2018 ◽  
Vol 6 (3) ◽  
pp. 548-553 ◽  
Author(s):  
Bandar M. A. Al–Makramani ◽  
Abdul A. A. Razak ◽  
Mohamed I. Abu–Hassan ◽  
Fuad A. Al–Sanabani ◽  
Fahad M. Albakri

BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations.AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material.MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test.RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05).CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested.


Sign in / Sign up

Export Citation Format

Share Document