scholarly journals Associação de imunoestimulante com anti-helmíntico no tratamento da verminose em ovinos

2012 ◽  
Vol 42 (12) ◽  
pp. 2229-2234
Author(s):  
Maria de Fátima Monteiro Martins ◽  
Maurício Garcia ◽  
Sabrina Caruso Chate ◽  
Fabrízia Aparecida Tavolari ◽  
Raffaella Bertoni Cavalcanti Teixeira ◽  
...  

Este estudo teve como objetivo verificar a eficiência do uso de imunoestimulante associado a anti-helmíntico no tratamento das helmintoses de ovinos. Os animais do grupo I (n=29) receberam o anti-helmíntico albendazole (11mg kg-1) em administração única e o imunoestimulante composto de Propionibacterium granulosum (16ug kg-1) e lipopolissacarídeo (LPS) de Escherichia coli (1,2ug kg-1) em duas doses com intervalo de 48 horas e os animais do grupo II (n=29) receberam o anti-helmíntico albendazole (11mg kg-1). Amostras foram colhidas semanalmente durante 28 dias para a realização da contagem total e diferencial de leucócitos, hematócrito e contagem de ovos por grama de fezes (OPG). Os animais que receberam imunoestimulante associado a anti-helmíntico apresentaram aumento significativo dos valores de eosinófilos e linfócitos (P<0,05) em relação aos animais que receberam somente anti-helmíntico. Na contagem de ovos por grama de fezes (OPG), não foram observadas diferenças significativas entre os grupos (P>0,05). Com base nesses resultados, pode-se concluir que imunoestimulantes podem ser utilizados associados a anti-helmínticos como alternativa terapêutica no tratamento das helmintíases em ovinos, uma vez que promovem a ativação da resposta imune com participação de células e mediadores importantes para a eliminação de helmintos em ovinos.

2000 ◽  
Vol 47 (8) ◽  
pp. 619-627 ◽  
Author(s):  
G. J. Pappaterra Mendoza ◽  
E. Mateu de Antonio ◽  
M. E. Novell Badal ◽  
M. Martin Castillo ◽  
J. Casal Fabrega ◽  
...  

Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
Manfred E. Bayer

The first step in the infection of a bacterium by a virus consists of a collision between cell and bacteriophage. The presence of virus-specific receptors on the cell surface will trigger a number of events leading eventually to release of the phage nucleic acid. The execution of the various "steps" in the infection process varies from one virus-type to the other, depending on the anatomy of the virus. Small viruses like ØX 174 and MS2 adsorb directly with their capsid to the bacterial receptors, while other phages possess attachment organelles of varying complexity. In bacteriophages T3 (Fig. 1) and T7 the small conical processes of their heads point toward the adsorption site; a welldefined baseplate is attached to the head of P22; heads without baseplates are not infective.


Author(s):  
A.J. Verkleij

Freeze-fracturing splits membranes into two helves, thus allowing an examination of the membrane interior. The 5-10 rm particles visible on both monolayers are widely assumed to be proteinaceous in nature. Most membranes do not reveal impressions complementary to particles on the opposite fracture face, if the membranes are fractured under conditions without etching. Even if it is considered that shadowing, contamination or fracturing itself might obscure complementary pits', there is no satisfactory explanation why under similar physical circimstances matching halves of other membranes can be visualized. A prominent example of uncomplementarity is found in the erythrocyte manbrane. It is wall established that band 3 protein and possibly glycophorin represents these nonccmplanentary particles. On the other hand a number of membrane types show pits opposite the particles. Scme well known examples are the ";gap junction',"; tight junction, the luminal membrane of the bladder epithelial cells and the outer membrane of Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document