scholarly journals Early somatic embryogenesis in Heliconia chartacea Lane ex Barreiros cv. Sexy Pink ovary section explants

2010 ◽  
Vol 53 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Cláudia Ulisses ◽  
Terezinha Rangel Camara ◽  
Lilia Willadino ◽  
Cynthia Cavalcanti de Albuquerque ◽  
Júlio Zoé de Brito

The present work evaluated the development of embryogenic callus from transversal ovary sections. The experiments were carried out under two experimental regimes using combinations of IAA (0; 5.71; 8.56; 11.42; 14.27μM) and 2,4-D (0; 13.57; 18.10; 22.62μM) or combinations of 2,4-D with BA (0; 4.43; 6.65; 8.87; 11.09μM). Assessments were made of anatomical aspects of the callus and for the presence of embryogenic structures using cytochemical and histological analyses and stereomicroscopic and scanning electronic microscopic observations. Treatments with 2,4-D and IAA produced friable calluses demonstrating cellular acquisition of morphogenetic competence as well as the formation of pro-embryogenic sectors. The expression of embryogenic program could be observed, with proembryogenic cell clusters developing into globular embryos. These results offer the possibility of using new types of explants for culturing helicons that avoid the growth of endophytic bacteria.

1970 ◽  
Vol 20 (2) ◽  
pp. 157-170 ◽  
Author(s):  
Richard M.S. Mulwa ◽  
Margaret M.A. Norton ◽  
Robert M. Skirvin

Abundant embryogenic callus was obtained from leaf and floral explants of "Chancellor" grape by continuous culture for 12 weeks on Nitsch and Nitsch basal medium supplemented with 9 μM 2, 4-D + 17 μM IASP + either 1 μM BA or 1 μM TDZ (ECIM) in darkness. They were successfully maintained by a five to six week subculture interval on NN medium containing 2 μM 2, 4-D + 0.2 μM TDZ + 4 μM IASP (LTMM). Near synchronous embryo developed from embryogenic callus on medium containing 10 μM IASP + 8 μM NOA + 1 μM TDZ + 1 μM ABA + 2.5 g/l AC (EDMM).  Individually separated somatic embryos were germinated on both NN and half strength of MS containing 0.5 μM BA + 0.025 μM NAA, respectively; normal plantlet conversion from embryos was low (35%).  Whole fruiting plants were obtained. Aberrant embryo development was characterized by failure to form functional shoot meristems following the initial cotyledon expansion during germination. These observations indicate that the embryo conversion stage of the regeneration is difficult and remains a limiting factor requiring more empirical experimentation for improvement in grape tissue culture.   Key words: Chancellor grape, Regeneration, Somatic embryogenesis   D.O.I. 10.3329/ptcb.v20i2.6895   Plant Tissue Cult. & Biotech. 20(2): 157-170, 2010 (December)


2017 ◽  
Vol 17 (1) ◽  
pp. 9
Author(s):  
Yosi Zendra Joni ◽  
Riry Prihatini ◽  
Darda Efendi ◽  
Ika Roostika

<p>Somatic embryogenesis is a technique for regenerating embryos derived from somatic cells of various plant species. This technique along with the utilization of plant growth regulator (PGR) might benefit for mass propagation and improvement of plant species through biotechnological tools. The study aimed to determine the effect of different plant growth regu-lators, namely 6-benzyladenine (BA) and thidiazuron (TDZ) on the embryogenic callus induction as well as casein hydrolysate and malt extract on the somatic embryo development of mangosteen. The explants used were in vitro young stems of mangosteen clone Leuwiliang. This study consisted of two experiments, namely induction of embryogenic callus and formation of somatic embryo. The first experiment was arranged as factorial in a completely randomized design with BA (0 and 0.7 mg l-1) as the first factor and TDZ (0, 0.1, 0.5 and 1.0 mg l-1) as the second factor. The second experiment consisted of four treatments, i.e. casein hydrolysate and malt extract at the rate of 500 and 1,000 mg l-1. The results showed that the best medium for embryogenic callus induction was MS supplemented with 0.1 mg l-1 TDZ, which resulted semifriable calli. Casein hydrolysate and malt extract could not induce the formation of somatic embryos. After two times subcultures on the same MS medium supplemented with 0.5 mg l-1 TDZ and 0.7 mg l-1 BA, a total of 33.8 somatic embryos per explant was induced. The successful somatic embryogenesis would support mangosteen breeding and in vitro mass propagation program.</p>


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 168
Author(s):  
Muhammad Ajmal Bashir ◽  
Cristian Silvestri ◽  
Amelia Salimonti ◽  
Eddo Rugini ◽  
Valerio Cristofori ◽  
...  

An efficient in vitro morphogenesis, specifically through somatic embryogenesis, is considered to be a crucial step for the application of modern biotechnological tools for genetic improvement in olive (Olea europaea L.). The effects of different ethylene inhibitors, i.e., cobalt chloride (CoCl2), salicylic acid (SA), and silver nitrate (AgNO3), were reported in the cyclic somatic embryogenesis of olive. Embryogenic callus derived from the olive immature zygotic embryos of the cultivar Leccino, was transferred to the expression ECO medium, supplemented with the ethylene inhibitors at 20 and 40 µM concentrations. Among these, the maximum number of somatic embryos (18.6) was obtained in media containing silver nitrate (40 µM), followed by cobalt chloride (12.2 somatic embryos @ 40 µM) and salicylic acid (40 µM), which produced 8.5 somatic embryos. These compounds interfered on callus traits: white friable embryogenic calli were formed in a medium supplemented with 40 µM cobalt chloride and salicylic acid; in addition, a yellow-compact embryogenic callus appeared at 20 µM of all the tested ethylene inhibitors. The resulting stimulatory action of silver nitrate among all the tested ethylene inhibitors on somatic embryogenesis, clearly demonstrates that our approach can efficiently contribute to the improvement of the current SE protocols for olive.


2020 ◽  
Author(s):  
Li Wen ◽  
Wei Li ◽  
Stephen Parris ◽  
Matthew West ◽  
John Lawson ◽  
...  

Abstract • Background • Genotype independent transformation and whole plant regeneration through somatic embryogenesis relies heavily on the intrinsic ability of a genotype to regenerate. • Results • In this study, gene expression profiles of a highly regenerable Gossypium hirsutum L. cultivar, Jin668, were analyzed at two critical developmental stages during somatic embryogenesis, non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells. The rate of EC formation in Jin668 is 96%. Differential gene expression analysis revealed a total of 5,333 differentially expressed genes (DEG) with 2,534 upregulated and 2,799 downregulated in EC. A total of 144 genes were unique to NEC cells and 174 genes unique to EC. Clustering and enrichment analysis identified genes upregulated in EC that function as transcription factors/DNA binding, phytohormone response, oxidative reduction, and regulators of transcription; while genes categorized in methylation pathways were downregulated. Four key transcription factors were identified based on their sharp upregulation in EC tissue; LEAFY COTYLEDON 1 (LEC1), BABY BOOM (BBM), FUSCA (FUS3) and AGAMOUS-LIKE15 with distinguishable subgenome expression bias. • Conclusions • This comparative analysis of NEC and EC transcriptomes gives new insights into the genetic underpinnings of somatic embryogenesis in cotton.


2006 ◽  
Vol 1 (3) ◽  
pp. 1934578X0600100
Author(s):  
Bishnu P. Chapagain ◽  
Vinod Saharan ◽  
Dan Pelah ◽  
Ram C. Yadav ◽  
Zeev Wiesman

This study describes the effects of plant growth regulators, explants, and somatic embryogenesis on in vitro production of the steroidal sapogenin, diosgenin, in callus cultures of the Balanites aegyptiaca (L.) Del.(desert date). Root, shoot, hypocotyl, and epicotyl callus culture of B. aegyptiaca, were raised on MS basal media supplemented with various combinations of either 2,4-D and NAA alone, or with BAP. The diosgenin content (on a dry weight basis) was found to be highest when calli were cultured in MS basal medium supplemented with 1.0 mg l−1 2,4-D alone and/or in combination with 0.5 mg l−1 BAP. However, the callus growth was highest in media supplemented with 2.5 or 3.0 mg l−1 2,4-D. MS basal media supplemented with 2,4-D 2.5 mg l−1 alone and in combination with 0.5 mg l−1 BAP induced pre-embryogenic callus formation on root cultures. When these pre-embryogenic callus cultures were used to establish cell suspension cultures, two growth densities were obtained in embryogenic suspension cultures, inducing clusters of somatic embryos at various stages of development. The maximum number of somatic embryos were obtained at the fifth week on the medium supplemented with 1.0 mg l−1 2,4-D. However, the diosgenin content in these somatic cells was found to be lower compared to the explant calluses. This study revealed that production of diosgenin in callus cultures of B. aegyptiaca is possible, but the amount is significantly affected by the growth regulators, type of explants, and somatic embryogenesis.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Li Wen ◽  
Wei Li ◽  
Stephen Parris ◽  
Matthew West ◽  
John Lawson ◽  
...  

Abstract Background Genotype independent transformation and whole plant regeneration through somatic embryogenesis relies heavily on the intrinsic ability of a genotype to regenerate. The critical genetic architecture of non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells in a highly regenerable cotton genotype is unknown. Results In this study, gene expression profiles of a highly regenerable Gossypium hirsutum L. cultivar, Jin668, were analyzed at two critical developmental stages during somatic embryogenesis, non-embryogenic callus (NEC) cells and embryogenic callus (EC) cells. The rate of EC formation in Jin668 is 96%. Differential gene expression analysis revealed a total of 5333 differentially expressed genes (DEG) with 2534 genes upregulated and 2799 genes downregulated in EC. A total of 144 genes were unique to NEC cells and 174 genes were unique to EC. Clustering and enrichment analysis identified genes upregulated in EC that function as transcription factors/DNA binding, phytohormone response, oxidative reduction, and regulators of transcription; while genes categorized in methylation pathways were downregulated. Four key transcription factors were identified based on their sharp upregulation in EC tissue; LEAFY COTYLEDON 1 (LEC1), BABY BOOM (BBM), FUSCA (FUS3) and AGAMOUS-LIKE15 with distinguishable subgenome expression bias. Conclusions This comparative analysis of NEC and EC transcriptomes gives new insights into the genes involved in somatic embryogenesis in cotton.


PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0230795
Author(s):  
Xue Li ◽  
Yan Chen ◽  
Shuting Zhang ◽  
Liyao Su ◽  
Xiaoping Xu ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Renan Terassi Pinto ◽  
Natália Chagas Freitas ◽  
Wesley Pires Flausino Máximo ◽  
Thiago Bergamo Cardoso ◽  
Débora de Oliveira Prudente ◽  
...  

Abstract Background Coffee production relies on plantations with varieties from Coffea arabica and Coffea canephora species. The first, the most representative in terms of coffee consumption, is mostly propagated by seeds, which leads to management problems regarding the plantations maintenance, harvest and processing of grains. Therefore, an efficient clonal propagation process is required for this species cultivation, which is possible by reaching a scalable and cost-effective somatic embryogenesis protocol. A key process on somatic embryogenesis induction is the auxin homeostasis performed by Gretchen Hagen 3 (GH3) proteins through amino acid conjugation. In this study, the GH3 family members were identified on C. canephora genome, and by performing analysis related to gene and protein structure and transcriptomic profile on embryogenic tissues, we point a GH3 gene as a potential regulator of auxin homeostasis during early somatic embryogenesis in C. arabica plants. Results We have searched within the published C. canephora genome and found 17 GH3 family members. We checked the conserved domains for GH3 proteins and clustered the members in three main groups according to phylogenetic relationships. We identified amino acids sets in four GH3 proteins that are related to acidic amino acid conjugation to auxin, and using a transcription factor (TF) network approach followed by RT-qPCR we analyzed their possible transcriptional regulators and expression profiles in cells with contrasting embryogenic potential in C. arabica. The CaGH3.15 expression pattern is the most correlated with embryogenic potential and with CaBBM, a C. arabica ortholog of a major somatic embryogenesis regulator. Conclusion Therefore, one out of the GH3 members may be influencing on coffee somatic embryogenesis by auxin conjugation with acidic amino acids, which leads to the phytohormone degradation. It is an indicative that this gene can serve as a molecular marker for coffee cells with embryogenic potential and needs to be further studied on how much determinant it is for this process. This work, together with future studies, can support the improvement of coffee clonal propagation through in vitro derived somatic embryos.


Sign in / Sign up

Export Citation Format

Share Document