scholarly journals Electrical and thermal properties of PLA/CNT composite films

2017 ◽  
Vol 22 (3) ◽  
Author(s):  
Thayara Ceregatti ◽  
Paloma Pecharki ◽  
Wagner M. Pachekoski ◽  
Daniela Becker ◽  
Carla Dalmolin
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chaitra Venkatesh ◽  
Yuanyuan Chen ◽  
Zhi Cao ◽  
Shane Brennan ◽  
Ian Major ◽  
...  

Abstract Poly (lactic acid)/halloysite nanotube (PLA/HNT) nanocomposites have been studied extensively over the past few years owing to the interesting properties of the polymer, PLA, and the nanoclay, HNT, individually and as composites. In this paper, the influence of the screw speed during extrusion was investigated and was found to have a significant impact on the mechanical and thermal performance of the extruded PLA/HNT nanocomposites. To determine the effect of screw speed on PLA/HNT nanocomposites, 5 and 10 wt% of HNTs were blended into the PLA matrix through compounding at screw speeds of 40, 80, and 140 rpm. Virgin PLA was compounded for comparison. The resultant polymer melt was quench cooled onto a calendar system to produce composite films which were assessed for mechanical, thermal, chemical, and surface properties. Results illustrate that in comparison to 40 and 80 rpm, the virgin PLA when compounded at 140 rpm, indicated a significant increase in the mechanical properties. The PLA/HNT 5 wt% nanocomposite compounded at 140 rpm showed significant improvement in the dispersion of HNTs in the PLA matrix which in turn enhanced the mechanical and thermal properties. This can be attributed to the increased melt shear at higher screw speeds.


2011 ◽  
Vol 233-235 ◽  
pp. 1726-1729
Author(s):  
Chun Guang Li ◽  
Rui Zhang ◽  
Yun Xia Li ◽  
Peng Fei Xu ◽  
Yan Qiu Wang

The biodegradable composite films were prepared from corn stalk microcrystalline cellulose as filler and polylactic acid (PLA) as polymeric matrix. The crystallinity, the tensile properties and the thermal properties of the composites were tested. The results show that the tensile properties and thermal properties were improved with the addition of corn stalk microcrystalline cellulose. When corn stalk microcrystalline cellulose account for 10% of the PLA quality, the initial decomposition temperature was raised by 34.38, tensile strength increased by 58.3% and elongation at break increased by 31.1% compared to those of pure PLA.


RSC Advances ◽  
2016 ◽  
Vol 6 (95) ◽  
pp. 92596-92604 ◽  
Author(s):  
Shadpour Mallakpour ◽  
Marzieh Adnany Sadaty

In the present investigation, TiO2 nanoparticles (NPs) were used for improving the thermal, mechanical and optical properties of poly(vinyl chloride) (PVC) matrix.


2011 ◽  
Vol 399-401 ◽  
pp. 381-384
Author(s):  
Chun Guang Li ◽  
Bin Guo Zheng ◽  
Wei Gong Peng ◽  
Wei Tian ◽  
Rui Zhang

The biodegradable composite films were prepared from bagasse microcrystalline cellulose as filler and poly(vinyl alcohol)(PVA) as polymeric matrix. The crystallinity, the tensile properties and the thermal properties of the composites were tested. Bagasse microcrystalline cellulose was distributed in PVA films as the crystalline state. The results show that the tensile properties and thermal properties were improved with the addition of bagasse microcrystalline cellulose. When bagasse microcrystalline cellulose mass fraction was 5%, both temperature of initial decomposition and maximum weight loss rate of composite film were raised by 11.71°C and 36.86°C, and the tensile strength increased by 17.88%, and the elongation at break increased by 36.62% compared to those of pure PVA.


Sign in / Sign up

Export Citation Format

Share Document