initial decomposition temperature
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 31)

H-INDEX

7
(FIVE YEARS 3)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 245
Author(s):  
Yong Sun ◽  
Yongli Peng ◽  
Yajiao Zhang

In this work, a flame retardant curing agent (DOPO-MAC) composed of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide DOPO and methyl acrylamide (MAC) was synthesized successfully, and the structure of the compound was characterized by FT-IR and 1H-NMR. The non-isothermal kinetics of the epoxy resin/DOPO-MAC system with 1% phosphorus was studied by non-isothermal DSC method. The activation energy of the reaction (Ea), about 46 kJ/mol, was calculated by Kissinger and Ozawa method, indicating that the curing reaction was easy to carry out. The flame retardancy of the epoxy resin system was analyzed by vertical combustion test (UL94) and limiting oxygen index (LOI) test. The results showed that epoxy resin (EP) with 1% phosphorus successfully passed a UL-94 V-0 rating, and the LOI value increased along with the increasing of phosphorus content. It confirmed that DOPO-MAC possessed excellent flame retardance and higher curing reactivity. Moreover, the thermal stability of EP materials was also investigated by TGA. With the DOPO-MAC added, the residual mass of EP materials increased remarkably although the initial decomposition temperature decreased slightly.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiaqian Li ◽  
Yaru Yang ◽  
Yunchao Xiao ◽  
Bolin Tang ◽  
Yaming Ji ◽  
...  

To improve the flame retardant properties of polyethylene terephthalate (PET), glucose-derived carbon nanospheres (CNSs) were synthesized and introduced into PET matrix. The thermal property and flame retardancy of CNSs/PET composites were thoroughly investigated. Results showed that CNSs displayed good flame-retardant performance for PET. When blended with only 1.0 wt.% of CNSs, CNSs/PET exhibited a limiting oxygen index (LOI) of 26.3 and a vertical combustion class of V-2, and its peak-heat release rate (pk-HRR) was reduced by 41.6%. Importantly, the initial decomposition temperature and the maximum weight loss temperature of CNSs/PET were 52°C and 199°C higher than those of PET, respectively. Furthermore, a condensed phase flame-retardant mechanism appeared in CNSs/PET, which formed a dense and thermally stable protective char layer during combustion. Overall, this study disclosed the flame-retardant potential and possible mechanism of CNSs for polyesters, which would benefit the development of carbon-based materials and flame-retardant polymers.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3155
Author(s):  
Shaojun Wu ◽  
Zhiyong Zhao ◽  
Hongliang Hou ◽  
Xiang Xue

High-performance multifunctional EMI shielding composite fabricated by low-cost method is increasingly required. Herein, novel EMI shielding nanocomposite laminates, consisting of composite prepreg of carbon fiber/epoxy resin/carbon nanotube film, were manufactured by facile electric heating of carbon nanotube film. The results indicated that composite with excellent specific shielding effectiveness of 0.07 dB/μm, 47 dB cm3/g and metamaterial properties can be designed by composite prepreg, and the primary shielding mechanism of it was reflection loss, along with interface polarization loss and conductive loss, which was superior to lots of shielding materials including carbon nanotube-based, carbon black-based, carbon nanofiber-based and graphene-based materials reported previously. Meanwhile, highly required excellent properties, including the thermostability with initial decomposition temperature up to 300 °C, hydrophobicity over contact angle of 115°, corrosion resistance of the composite with metal-free modification, and function as structural laminate compared with previous studies were demonstrated, which suggested tremendous potentials of the multifunctional EMI shielding composites in harsh environment.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3648
Author(s):  
Jiawei Jiang ◽  
Siqi Huo ◽  
Yi Zheng ◽  
Chengyun Yang ◽  
Hongqiang Yan ◽  
...  

Hexaphenoxycyclotriphosphazene (HPCP) is a common flame retardant for epoxy resin (EP). To improve the thermostability and fire safety of HPCP-containing EP, we combined UiO66-NH2 (a kind of metal-organic frame, MOF) with halloysite nanotubes (HNTs) by hydrothermal reaction to create a novel synergistic flame retardant (H-U) of HPCP for EP. For the EP containing HPCP and H-U, the initial decomposition temperature (T5%) and the temperature of maximum decomposition rate (Tmax) increased by 11 and 17 °C under nitrogen atmosphere compared with those of the EP containing only HPCP. Meanwhile, the EP containing HPCP and H-U exhibited better tensile and flexural properties due to the addition of rigid nanoparticles. Notably, the EP containing HPCP and H-U reached a V-0 rating in UL-94 test and a limited oxygen index (LOI) of 35.2%. However, with the introduction of H-U, the flame retardant performances of EP composites were weakened in the cone calorimeter test, which was probably due to the decreased height of intumescent residual char.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6088
Author(s):  
Rui Zhang ◽  
Wei Feng ◽  
Qi Wei ◽  
Shuai Ma

Dense Ti3SiC2/ZnO composites were sintered at different temperatures by spark plasma sintering (SPS). The effects of sintering temperature on composition and mechanical properties of Ti3SiC2/ZnO composites were studied. The tribological behaviors of Ti3SiC2/ZnO composites/Inconel 718 alloy tribo-pairs at elevated temperature from 25 °C to 800 °C were discussed. The experimental results showed that the initial decomposition temperature of the Ti3SiC2/ZnO composite was 1150 °C, and Ti3SiC2 decomposed into TiC. When the decomposition temperature was higher than 1150 °C, the compositions of the Ti3SiC2/ZnO composites were Ti3SiC2, ZnO, and TiC. It was found that Ti3SiC2/ZnO composites had better self-lubricating performance than Ti3SiC2 at elevated temperature from 600 °C to 800 °C, which was owing to material transfers of tribo-pairs and sheared oxides generated by tribo-oxidation reactions.


2021 ◽  
Author(s):  
Yajun Chen ◽  
Jingxiu He ◽  
Zhe Sun ◽  
Bo Xu ◽  
Juan Li ◽  
...  

Abstract Cellulose nanocrystals (CNCs) have been used as bio-based carbon source in intumescent system. However, CNCs have the disadvantages of low onset decomposition temperature and decompose and carbonize during processing. We, herein, demonstrated the design of phosphazene-containing CNCs (P/N-CNCs) with great thermal stability and outstanding charring ability. The TGA results showed that the initial decomposition temperature of P/N-CNCs was increased from 202.4 ℃ to 272.2 ℃ (increased by 34.5%), and the residual char at 700 ℃ was increased from 24.9 wt% to 55.8 wt% compared with CNCs. Then, flame retardant PLA composites were prepared by blending PLA, P/N-CNCs with ammonium polyphosphate (APP), melamine (MPP), aluminum hypophosphite (AHP) and piperazine pyrophosphate (PPAP), respectively. The thermal stability, flame retardant properties and mechanical properties of PLA composites were investigated. The results showed that the flame retardant system constructed by 7 wt% APP and 3 wt% P/N-CNCs had the best effect in PLA. PLA/7APP/3P/N-CNCs had the highest limit oxygen index value (28.1%), the lowest peak heat release rate (266 kW/m2) and reached UL 94 V-0 rating. Moreover, the tensile strength, impact strength and elongation at break of PLA/7APP/3P/N-CNCs were increased by 7.3%, 18.6% and 29.4%, respectively, compared with these properties of PLA/7APP/ 3CNCs. This work provides a new idea for the design of CNCs with great thermal stability and outstanding charring ability, and offers a new method for the preparation of high-performance flame-retardant PLA composites.


2021 ◽  
Author(s):  
Zhihao Sun ◽  
Zheng Li ◽  
Zhongfei Ma ◽  
Minxue Zheng ◽  
Wang Zhan

Abstract To counter paper flammability, SF-JR400/MP-SiO2 sourced from natural silk protein may be applied to the paper surface using layer-by-layer assembly (LbL). The microstructure and composition of the coating may be assessed using SEM, FTIR and XPS. Presence of the coating increases the paper combustion limiting oxygen index (LOI) from 20.4% to 38%. Compared to untreated DBP, TGA analysis shows that the initial decomposition temperature of DBP rises from 115˚C to 148˚C. Residual char yield increases from 11.3% to 38.8%. The formation of a surface char layer protects paper internal fibers from heat feedback and consequent thermal decomposition. Analysis using CONE indicates that a 25-layer assembly can reduce the peak and total heat dissipation by 88.4% and 54.7%, respectively analysis suggests that silk may function as an agent to accelerate the coating, formation of a protective.


2021 ◽  
Author(s):  
Changjie Chen ◽  
jing Tan ◽  
Weiguo Zhang ◽  
Zhong Wang ◽  
Guohe Wang ◽  
...  

Abstract Windmill palm fiber, a high-quality cellulose resource, can be extracted from discarded palm sheath. However, its application in textile filling and composite reinforcement is limited due to its hydrophilic solid. In this paper, effects of chemical treatment such as alkali, acetyl chloride, and acetic anhydride treatment on the micro-morphology, water repellency, sound absorption, thermal conductivity and thermal stability of the windmill palm fiber were investigated. The results showed that the surface of windmill palm fiber treated by alkali was relatively smooth and compact. In comparison, the acetylation treatment destroyed the cell wall with micro-holes on the surface. Acetylation modification can significantly improve the water repellency of fibers. Furthermore, thewater static contact angle can be achieved 148o. Acetylation treatment improved the sound absorption performance of the fiber mat with an average sound absorption coefficient of 0.47, kept low thermal conductivity of under 0.050 W/(m℃), and improved the thermal stability with the initial decomposition temperature 356oC.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3224
Author(s):  
Wenjie Du ◽  
Rui Ma ◽  
Zhiyan Liu ◽  
Gang Yang ◽  
Tao Chen

A novel Graphene oxide/Laponite RD/Chitosan ternary composite was synthesized by sol-gel method and freeze-drying method. The Laponite RD was silanized by 3-aminopropyltriethoxysilane (APTES). Graphene oxide (GO) was prepared by an improved Hummers method. Under the acidic conditions, self-assembly recombination was realized by electrostatic interaction between modified Laponite RD and GO. The results from Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy confirmed that the modified Laponite RD was successfully compounded with GO, and the composite is laminated and stacked. The results from BET (Brunauer–Emmett–Teller) methods found that the BET-specific surface area of the hybrid aerogel significantly increased with the increase of the doping content of the composite, and the specific surface area of the aerogel composite with 20% doping content reached 81 m2/g. The structure of aerogel is porous, and there are numerous holes in the interior, which is closely related to adsorption properties. Thermogravimetric analysis (TG) test was used to explore the change of thermal properties of hybrid aerogel materials, and it was found that the addition of composite increased the initial decomposition temperature and thermal stability of hybrid aerogel. Finally, the potential applications of aerogel were tested, such as methylene blue adsorption and CO2 adsorption.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1686
Author(s):  
Ignazio Blanco ◽  
Valentina Siracusa

The public pressure about the problems derived from the environmental issues increasingly pushes the research areas, of both industrial and academic sectors, to design material architectures with more and more foundations and reinforcements derived from renewable sources. In these efforts, researchers make extensive and profound use of thermal analysis. Among the different techniques available, thermal analysis offers, in addition to high accuracy in the measurement, smartness of execution, allowing to obtain with a very limited quantity of material precious information regarding the property–structure correlation, essential not only in the production process, but overall, in the design one. Thus, techniques such as differential scanning calorimetry (DSC), differential thermal analysis (DTA), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) were, are, and will be used in this transition from fossil feedstock to renewable ones, and in the development on new manufacturing processes such as those of additive manufacturing (AM). In this review, we report the state of the art of the last two years, as regards the use of thermal techniques in biopolymer design, polymer recycling, and the preparation of recyclable polymers as well as potential tools for biopolymer design in AM. For each study, we highlight how the most known thermal parameters, namely glass transition temperature (Tg), melting temperature (Tf), crystallization temperature (Tc) and percentage (%c), initial decomposition temperature (Ti), temperature at maximum mass loss rate (Tm), and tan δ, helped the researchers in understanding the characteristics of the investigated materials and the right way to the best design and preparation.


Sign in / Sign up

Export Citation Format

Share Document