scholarly journals BTCI enhances guanylin-induced natriuresis and promotes renal glomerular and tubular effects

2008 ◽  
Vol 68 (1) ◽  
pp. 149-154 ◽  
Author(s):  
AF. Carvalho ◽  
MS. Santos-Neto ◽  
HSA. Monteiro ◽  
SM. Freitas ◽  
L. Morhy ◽  
...  

Guanylin and uroguanylin are small cysteine-rich peptides involved in the regulation of fluid and electrolyte homeostasis through binding and activation of guanylyl cyclases signaling molecules expressed in intestine and kidney. Guanylin is less potent than uroguanylin as a natriuretic agent and is degraded in vitro by chymotrypsin due to unique structural features in the bioactive moiety of the peptide. Thus, the aim of this study was to verify whether or not guanylin is degraded by chymotrypsin-like proteases present in the kidney brush-border membranes. The isolated perfused rat kidney assay was used in this regard. Guanylin (0.2 µM) induced no changes in kidney function. However, when pretreated by the black-eyed pea trypsin and chymotrypsin inhibitor (BTCI - 1.0 µM; guanylin - 0.2 µM) it promoted increases in urine flow (deltaUF of 0.25 ± 0.09 mL.g-1/min, P < 0.05) and Na+ excretion (% delta ENa+ of 18.20 ± 2.17, P < 0.05). BTCI (1.0 µM) also increased %ENa+ (from 22.8 ± 1.30 to 34.4 ± 3.48, P < 0.05, 90 minutes). Furthermore, BTCI (3.0 µM) induced increases in glomerular filtration rate (GFR; from 0.96 ± 0.02 to 1.28 0.02 mL.g-1/min, P < 0.05, 60 minutes). The present paper strongly suggests that chymotrypsin-like proteases play a role in renal metabolism of guanylin and describes for the first time renal effects induced by a member of the Bowman-Birk family of protease inhibitors.

2003 ◽  
Vol 373 (3) ◽  
pp. 987-992 ◽  
Author(s):  
Eng-Kiat LIM ◽  
Gillian S. HIGGINS ◽  
Yi LI ◽  
Dianna J. BOWLES

Caffeic acid is a phenylpropanoid playing an important role in the pathways leading to lignin synthesis and the production of a wide variety of secondary metabolites. The compound is also an antioxidant and has potential utility as a general protectant against free radicals. Three glucosylated forms of caffeic acid are known to exist: the 3-O- and 4-O-glucosides and the glucose ester. This study describes for the first time a glucosyltransferase [UDP-glucose:glucosyltransferase (UGT)] that is specific for the 3-hydroxyl, and not the 4-hydroxyl, position of caffeic acid. The UGT sequence of Arabidopsis, UGT71C1, has been expressed as a recombinant fusion protein in Escherichia coli, purified and assayed against a range of substrates in vitro. The assay confirmed that caffeic acid as the preferred substrate when compared with other hydroxycinnamates, although UGT71C1 also exhibited substantial activity towards flavonoid substrates, known to have structural features that can be recognized by many different UGTs. The expression of UGT71C1 in transgenic Arabidopsis was driven by the constitutive cauliflower mosaic virus 35 S (CaMV35S) promoter. Nine independent transgenic lines were taken to homozygosity and characterized by Northern-blot analysis, assay of enzyme activity in leaf extracts and HPLC analysis of the glucosides. The level of expression of UGT71C1 was enhanced considerably in several lines, leading to a higher level of the corresponding enzyme activity and a higher level of caffeoyl-3-O-glucoside. The data are discussed in the context of the utility of UGTs for natural product biotransformations.


1980 ◽  
Vol 239 (1) ◽  
pp. E12-E20 ◽  
Author(s):  
A. M. Rosenthal ◽  
G. Jones ◽  
S. W. Kooh ◽  
D. Fraser

Kidneys of adult rats were removed and perfused with semisynthetic media with the object of elucidating the separate actions of factors implicated as modulators of renal metabolism of 25-hydroxyvitamin D3 (25(OH)D3). During a 3-h perfusion with 3[H]25(OH)D3, the kidney produced high yields of 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) depending on whether the rat had previously been, respectively, normocalcemic, normophosphatemic, vitamin D-replete or hypocalcemic, hypophosphatemic, vitamin D-deplete. With longer perfusion (up to 12 h), kidneys from normocalcemic, normophosphatemic, vitamin D-replete rats mainly produced 24,25(OH)2D3 but also amounts of 1,25(OH)2D3. This pattern was unaltered by reducing Ca or Pi concentrations of perfusate or by adding parathyroid hormone. Kidneys of hypocalcemic, hypophosphatemic, vitamin D-deplete rats perfused with low Ca, low Pi medium for 12 h at first produced 1,25(OH)2D3 exclusively. However, 24,25(OH)2D3 appeared after 4 h and accumulated thereafter, whereas 1,25(OH)2D3 synthesis ceased after 7 h, a metabolic pattern unaffected by the concentration of substrate or end products in the perfusate or by addition of cyclic AMP. The model shows promise for studying regulation of 25(OH)D3 metabolism by the kidney.


1995 ◽  
Vol 269 (4) ◽  
pp. C917-C922 ◽  
Author(s):  
K. Yoshioka ◽  
J. W. Fisher

We have previously reported that nitric oxide (NO) and guanosine 3',5'-cyclic monophosphate (cGMP) may be involved in the regulation of erythropoietin (Epo) production in response to hypoxia both in vivo and in vitro (20). In the present studies, we have used the isolated perfused rat kidney to assess the role of NO in oxygen sensing and Epo production. When arterial PO2 was reduced from 100 mmHg (normoxemic) to 30 mmHg (hypoxemic) in the perfusate of this system, perfusate levels of Epo were significantly increased. This hypoxia-induced increase in Epo production was significantly decreased by the addition of NG-nitro-L-arginine methyl ester (L-NAME; 1 mM) to the perfusates. Hypoxemic perfusion also produced a significant increase, and L-NAME significantly inhibited this increase, in intracellular cGMP levels in the kidney when compared with normoxemic perfused kidneys. Quantitative reverse transcription-polymerase chain reaction also revealed that hypoxemic perfusion produced significant increases in Epo mRNA levels in the kidney, which was blocked by L-NAME. Our findings further support an important role for the NO/cGMP system in hypoxic regulation of Epo production.


1987 ◽  
Vol 253 (2) ◽  
pp. R375-R378
Author(s):  
G. E. Plante ◽  
C. Prevost ◽  
A. Chainey ◽  
P. Braquet ◽  
P. Sirois

The effect of increasing doses of prestegane B, a synthetic lignan, was examined in the anesthetized normal rat, using clearance methodology. Increasing doses of prestegane B 0.5, 1.0, 2.0, and 5.0 mg) were administered intravenously in our separate groups of hydropenic rats. Urine flow increased by 2.8 +/- 0.3, 4.5 +/- 0.5, 7.7 +/- 0.5, and 18.2 +/- 0.8 microliters/min, respectively, above control values. The rise of urinary sodium secretion was of similar magnitude and averaged 0.4 +/- 0.1, 0.8 +/- 0.2, 1.1 +/- 0.3, and 2.4 +/- 0.3 mu eq/min, respectively. No significant change in urinary phosphate excretion was obtained in all groups of rats, and glomerular filtration rate remained constant from control to experimental clearance periods. The natriuretic effect of prestegane B observed in this in vivo model could be related to the inhibition of the Na+-K+-adenosine triphosphate activity demonstrated in vitro in previous studies from our laboratory. The action of this substance is likely to be situated beyond the proximal tubule, since urinary phosphate was not altered. Prestegane B mimics the effects of other endogenous diuretic and natriuretic hormones, but its site of action and its effect on renal hemodynamics are obviously different.


1992 ◽  
Vol 263 (2) ◽  
pp. R273-R278
Author(s):  
M. R. Lebowitz ◽  
A. M. Moses ◽  
S. J. Scheinman

Atrial natriuretic peptide (ANP) antagonizes the release and action of arginine vasopressin (AVP) both in vivo and in vitro. We have reported that ANP increases the urinary and metabolic clearances of AVP in normal subjects (A. M. Moses et al. J. Clin. Endocrinol. Metab. 70: 222-229, 1990). To clarify this effect, we perfused isolated rat kidneys in vitro and measured the clearances of AVP for 30 min after the addition of rat ANP [rANP-(1-28), 10(-7) M]. In the perfused kidney, rANP increased the urinary clearance of AVP (UCAVP) from 321 +/- 19 to 417 +/- 20 microliters/min (P less than 0.01) and increased the glomerular filtration rate (GFR) from 558 +/- 28 to 696 +/- 28 microliters/min (P less than 0.01). Fractional excretion of AVP was unchanged. Rates of AVP reabsorption were directly related to filtered AVP, and this relationship was not altered by ANP. ANP did not affect the total organ clearance or the renal metabolic clearance of AVP. The increase in GFR was associated with increases in renal vascular resistance (P less than 0.05), filtration fraction (P less than 0.01), and sodium excretion (P less than 0.001). UCAVP also increased when GFR was raised without ANP by perfusing at higher pressures. The rat ANP clearance receptor agonist [cANP- (4-23), 10(-7) M] did not change GFR or UCAVP. ANP increases UCAVP in the isolated perfused rat kidney. This appears to be a hemodynamic effect of ANP, acting through its biological receptor and not the clearance receptor.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (5) ◽  
pp. F901-F908
Author(s):  
K. A. Roby ◽  
S. Segal

Renal tubular reabsorption of cystine and lysine were studied in the isolated perfused rat kidney to bridge the gap between in vivo clearance studies, and in vitro transport studies of tubule fragments, cells, and brush-border membranes. Lysine was reabsorped by a saturable transport system shared by the dibasics. Cystine was also reabsorbed by a saturable transport system, which was shared in part by the dibasics (maximum inhibition 30%). The lysine threshold (Fmin) was 0.9 mumol.min-1.g-1, with a tubular maximum (TM) of 2.4 mumol.min-1.g-1. The cystine Fmin was 0.06 mumol.min-1.g-1; the TM could not be estimated because it was above the limit of cystine solubility. There was no evidence of cystine ,secretion.- The gamma-glutamyltransferase inhibitor, AT-125, decreased cystine excretion, but only in the presence of glutathione, glycine, glutamate, and the diabasic amino acids. This suggests that cystine from glutathione degradation at the brush border may contribute to urinary cystine (an explanation of the phenomenon of cystine secretion), but only under certain conditions.


1988 ◽  
Vol 255 (3) ◽  
pp. F391-F396 ◽  
Author(s):  
J. D. Firth ◽  
A. E. Raine ◽  
J. G. Ledingham

The effect of alteration in renal perfusion pressure on the response of the isolated perfused rat kidney to concentrations of alpha-human atrial natriuretic peptide (ANP) within the pathophysiological range has been examined. At a perfusion pressure of 90 mmHg ANP concentrations of 50, 200, and 1,000 pmol/l were without effect on any parameter tested. At a perfusion pressure of 130 mmHg 50 pmol/l ANP produced an increase of 3.13 +/- 0.68 mumol/min in sodium excretion (UNa V), compared with a fall of 0.33 +/- 1.04 mumol/min in controls (P less than 0.02); fractional excretion of sodium (FENa) rose by 1.45 +/- 0.36% vs. -0.12 +/- 0.47% (P less than 0.05); glomerular filtration rate (GFR) was unchanged. At 200 and 1,000 pmol/l larger changes in UNa V and FENa were seen; only at 1,000 pmol/l was a significant effect on GFR observed. In contrast, frusemide (furosemide) at concentrations of 10 and 100 mumol/l was natriuretic at both 90 and 130 mmHg, with lesser absolute but greater proportional changes being seen at the lower pressure. It was concluded 1) the response of the isolated kidney to ANP is critically dependent on perfusion pressure, 2) at elevated levels of perfusion pressure the isolated kidney can respond to levels of ANP within the upper physiological and pathophysiological range.


1976 ◽  
Vol 51 (s3) ◽  
pp. 101s-104s
Author(s):  
R. Vandongen ◽  
Dianne M. Greenwood

1. The effect of diazoxide (17·3 μmol min—1 g—1) and frusemide (0·12 μmol min—1 g—1) on renin secretion was examined in the isolated perfused rat kidney. These substances are potential renal vasodilators with opposite effects on urine sodium excretion. 2. Both agents significantly increased renin secretion rate above control values. In the case of frusemide this was not altered by ureteric occlusion and presumed absence of urine flow. 3. Mean renal perfusion pressure decreased to the same extent with diazoxide and frusemide infusion as in the control experiments and no additional vasodilatory effect was observed on the basis of changes in flow rate of perfusate. 4. These observations identify an intrarenal site of action for diazoxide and frusemide on renin secretion. The apparent independence of this stimulatory action on renal vasodilatation and urine flow suggests a direct effect on the renin-producing cell.


Sign in / Sign up

Export Citation Format

Share Document