scholarly journals Influence of temperature on the adhesion of fibre reinforced polymers to timber surface

2019 ◽  
Vol 19 (3) ◽  
pp. 25-38 ◽  
Author(s):  
Ângela do Valle ◽  
Poliana Dias de Moraes ◽  
Giancarlo Zibetti Mantovani ◽  
Hudson Fagundes

Abstract Carbon and glass fibre reinforced polymer composites are being increasingly used in timber structures, where they can be exposed to harsh temperature conditions. In order to be properly used, information is needed on their adhesion to the substrate. The objective of this research is to evaluate the influence of temperatures between 20 and 80 ºC on the adhesion of these reinforcements to the wood. The shear test of adhesive line and pull-off test of the reinforcement from wood surface were carried out using specimens made of Pinus spp. The results demonstrated that temperature causes the nonlinear reduction of the reinforcement adhesion. The specimens exposed to a temperature of 80 °C presented residual bond strength means of 34% and 20% of the mean strength at room temperature for CFRP and for GFRP, respectively. Caution in using the applied resins is required due to the presented behaviour even in the service temperature range specified by the manufacturers.

2007 ◽  
Vol 34 (3) ◽  
pp. 403-413 ◽  
Author(s):  
Shamim A Sheikh

Several bridge columns, in which concrete was delaminated as a result of steel corrosion, were repaired in the mid 1990s. Different types of grout, including one based on expansive cement, were used to rebuild the damaged columns to their original shape; the columns were then wrapped with glass-fibre-reinforced polymers (GFRPs). The associated lab study indicated that the observed damage caused a reduction of about 20% in the axial-load-carrying capacity of the columns and much larger reductions in ductility and energy-dissipating capacity. The experimental results also showed that the strength and ductility of the columns could be recovered by repairing them with GFRP. Long-term monitoring of three columns repaired in the field using GFRP has indicated their excellent performance. No deterioration has been observed in the fibre-reinforced polymer or in the columns in more than 10 years. Monitoring has also shown a reduction in the rate and associated risk of corrosion over time; thus, this is a more durable retrofitting technique than traditional ones, such as steel jacketing.Key words: concrete, columns, corrosion, cyclic loading, ductility, expansive cement, glass-fibre-reinforced polymers, monitoring, repair, strength.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 492
Author(s):  
Zhen Pei Chow ◽  
Zaini Ahmad ◽  
King Jye Wong ◽  
Seyed Saeid Rahimian Koloor ◽  
Michal Petrů

This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal–composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium–glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen’s edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.


2018 ◽  
Vol 45 (4) ◽  
pp. 263-278 ◽  
Author(s):  
Michael Rostami ◽  
Khaled Sennah ◽  
Hamdy M. Afefy

This paper presents an experimental program to justify the barrier design at the barrier–deck junction when compared to the factored applied transverse vehicular loading specified in the Canadian Highway Bridge Design Code (CHBDC). Compared to the dimensioning and the glass fibre reinforced polymer (GFRP) bar detailing of a recently crash-tested GFRP-reinforced barrier, the adopted barrier configurations in this paper were similar to those specified by Ministry of Transportation of Québec (MTQ) for TL-5 barrier except that the base of the barrier was 40 mm narrower and the deck slab is of 200 mm thickness, leading to reduction in the GFRP embedment depth into the deck slab. Four full-scale TL-5 barrier specimens were tested to collapse. Correlation between the experimental findings and the factored applied moments from CHBDC equivalent vehicle impact forces resulting from the finite-element modelling of the barrier–deck system was conducted followed by recommendations for use of the proposed design in highway bridges in Québec.


2014 ◽  
Vol 564 ◽  
pp. 428-433 ◽  
Author(s):  
S.N.A. Safri ◽  
Mohamed Thariq Hameed Sultan ◽  
N. Razali ◽  
Shahnor Basri ◽  
Noorfaizal Yidris ◽  
...  

The purpose of this work is to study the best number of layer with the higher impact energy using Glass Fibre Reinforced Polymer (GFRP). The number of layers used in this study was 25, 33, 41, and 49. The impact test was performed using Single Stage Gas Gun (SSGG) for each layers given above with different bullets such as blunt, hemispherical and conical bullets. The gas gun pressure was set to 5, 10, 15 and 20 bar. All of the signals captured from the impact test were recorded using a ballistic data acquisition system. The correlation between the impact energy in terms of number of layer and type of bullet from this test are presented and discussed. It can be summarise that as the number of layer increases, impact energy also increases. In addition, from the results, it was observed that by using different types of bullets (blunt, hemispherical, conical), there is only a slight difference in values of energy absorbed by the specimen.


2014 ◽  
Vol 970 ◽  
pp. 317-319 ◽  
Author(s):  
Syed Mohd Saiful Azwan ◽  
Yahya Mohd Yazid ◽  
Ayob Amran ◽  
Behzad Abdi

Fibre reinforced polymer (FRP) plates subject to quasi-static indentation loading were studied. The plates were fabricated from three layers of chopped strand mat glass fibre and polyester resin using vacuum infusion process. Indentation tests were conducted on the plates with loading rates of 1 mm/min, 10 mm/min, 100 mm/min and 500 mm/min using a hemispherical tip indenter with diameter 12.5 mm. The plates were clamped in a square fixture with an unsupported space of 100 mm × 100 mm. The loads and deflections at the indented location were measured to give energy absorption-deflection curves. The results showed that the loading rate has a large effect on the indentation behaviour and energy absorbed.


Sign in / Sign up

Export Citation Format

Share Document