scholarly journals A comparison of methods for estimating fish assemblages associated with estuarine artificial reefs

2011 ◽  
Vol 59 (spe1) ◽  
pp. 119-131 ◽  
Author(s):  
Michael Lowry ◽  
Heath Folpp ◽  
Marcus Gregson ◽  
Rob Mckenzie
2006 ◽  
Vol 63 (5) ◽  
pp. 775-784 ◽  
Author(s):  
Dan Wilhelmsson ◽  
Torleif Malm ◽  
Marcus C. Öhman

Abstract A significant expansion of offshore windpower is expected in northwestern Europe in the near future. Little is known about the impacts it may have on the marine environment. Here, we investigate the potential for wind turbines to function as artificial reefs and fish aggregation devices (FADs), i.e. whether they would locally increase fish densities or alter fish assemblages. Fish communities and habitat composition were investigated using visual transects at two windpower farms off the southeastern coast of Sweden, central Baltic Sea. Fish abundance was greater in the vicinity of the turbines than in surrounding areas, while species richness and Shannon–Wiener diversity (H′) were similar. On the monopiles of the turbines, fish community structure was different, and total fish abundance was greater, while species richness and diversity (H′) were lower than on the surrounding seabed. Blue mussels and barnacles covered most of the submerged parts of the turbines. On the seabed, more blue mussels and a lesser cover of red algae were recorded around the power plants than elsewhere. Results from this study suggest that offshore windfarms may function as combined artificial reefs and fish aggregation devices for small demersal fish.


1981 ◽  
Vol 59 (9) ◽  
pp. 1635-1646 ◽  
Author(s):  
Dominique Gascon ◽  
Roberta A. Miller

We investigated the structure of a temperate nearshore fish community by examining the development of fish assemblages on small artificial reefs of concrete blocks constructed in two series 6 months apart. In each series, a species equilibrium, of approximately six species, was rapidly reached within 6 months. Eight of the 30 species which had colonized the reefs from the surrounding rocky habitats were common on the reefs. Both juveniles and adults of all species were present, except for the rockfishes (Sebastes spp.) which were represented only by young individuals (1 to 3 years of age). Tagging indicated that the bottom-dwelling species (Gobiidae, Cottidae) remained permanently on the reefs, whereas a seasonal turnover in rockfish occurred.The communities inhabiting the reefs usually did not differ from each other within each series, whereas significant differences occurred between series. This difference was attributed to the differential colonizing ability of species. No evidence of interspecific competition was apparent among the species inhabiting the reefs.The results are discussed in light of some current models of coral reef fish community structure. Some possible factors affecting the differences observed between tropical and temperate waters are also discussed.


<em>Abstract</em>.—Reef-fish assemblage structure was compared among multiple artificial and geologic (i.e., naturally occurring hard bottom) habitats in the northeastern Gulf of Mexico during 2014–2016 as part of a larger fishery-independent survey. Baited remote underwater video systems equipped with stereo cameras were deployed (<em>n </em>= 348) on 11 habitat types, classified through interpretation of side-scan sonar imagery. In the video samples, 11,801 fish were enumerated. Nonparametric analysis of reef-fish assemblages detected four clusters related to habitat; assemblages associated with geologic habitats were distinct, whereas the remaining three clusters represented groupings of artificial habitats of different size, scale, and complexity. While many species, including Vermilion Snapper <em>Rhomboplites aurorubens </em>and Red Snapper <em>Lutjanus campechanus</em>, were observed in greater numbers on artificial reef habitats, most species were observed in all habitats sampled. Among artificial reef habitats, the habitat cluster consisting of unidentified depressions, unidentified artificial reefs, construction materials, and reef modules was similar to geologic habitats in supporting larger individuals, specifically Gray Triggerfish <em>Balistes capriscus </em>and Red Snapper. In contrast, the habitat cluster consisting of smaller, generally solitary chicken-transport cages was inhabited by smaller individuals, including smaller Red Snapper. Although geologic reefs are the predominant reef habitat throughout much of the eastern Gulf, artificial reefs are important locally, especially in the Florida Panhandle. Accordingly, continued incorporation of artificial reef habitats within large-scale fishery-independent monitoring efforts is critical to the accurate assessment of the status of reef-fish stocks on broad spatial scales.


2017 ◽  
Vol 68 (10) ◽  
pp. 1955 ◽  
Author(s):  
James A. Smith ◽  
William K. Cornwell ◽  
Michael B. Lowry ◽  
Iain M. Suthers

Artificial reefs are a widely used tool aimed at fishery enhancement, and measuring the scale at which fish assemblages associate with these artificial habitat patches can aid reef design and spatial arrangement. The present study used rapidly deployed underwater video (drop cameras) to determine the magnitude and spatial scale of associations between a fish assemblage and a coastal artificial reef. Count data from drop cameras were combined with distance and bathymetry information to create a suite of explanatory generalised linear mixed models (GLMMs). The GLMMs showed that artificial reefs can influence surrounding fish abundance, but that the magnitude and scale is species specific. Three of the eight taxonomic groups examined showed a positive association with the artificial reef (with model fit poor for the remaining groups); and depth and bottom cover were also influential variables. The spatial scales of these associations with the artificial reef were small, and it was generally the presence of reef (i.e. a reef bottom type) that explained more variation in fish abundance than did distance to reef. The schooling baitfish yellowtail scad was an exception, and had elevated abundance >50m from the artificial reef. Further distribution modelling of artificial reefs will benefit species-specific design and management of artificial reefs.


Author(s):  
Diogo Fonseca Da Rocha ◽  
Marcos Alberto Lima Franco ◽  
Pedro Vianna Gatts ◽  
Ilana Rosental Zalmon

Artificial reefs (ARs) are often used to improve fishing and, consequently, the economy of a region. However, the way in which the species use the reefs may vary between fish assemblages. An assessment was made of the influence of an AR complex on the transient fish population off the northern coast of Rio de Janeiro state and, therefore, two control areas were sampled. Gillnets were used to capture individual fish in six sampling surveys. Cumulative abundance and biomass curves (ABC) were used to assess the possible effects of the reefs on the community's functional structure. In the dry season, during which the influence of the Paraíba do Sul River is smaller, a larger richness of r-strategy species and juveniles of K-strategy species was observed in the reef area compared with the control areas, suggesting that the AR acts as a protective environment for these species. During the lower river discharge period the results indicated a potential disturbance in the functional structure of the AR fish community and, therefore, a less stable environment relative to the control areas. This ‘instability’ warrants a positive connotation, as it indicates that the artificial reefs are harbouring species that are particularly sensitive to predation, making the reef a powerful tool for maintaining these populations on the northern coast of Rio de Janeiro.


2015 ◽  
Vol 72 (8) ◽  
pp. 2385-2397 ◽  
Author(s):  
Jennifer E. Granneman ◽  
Mark A. Steele

Abstract Artificial reefs are used to enhance populations of marine organisms, but relatively few studies have quantitatively evaluated which attributes of reef structure are most critical in determining whether assemblages of organisms on artificial reefs are similar to those on natural reefs. Using five pairs of artificial and natural reefs that spanned 225 km in the Southern California Bight, we evaluated how well fish assemblages on artificial reefs mimicked those on natural reefs and which attributes of reefs best predicted assemblage structure. Along underwater visual transects, we quantified fish species richness, density, and size structure, as well as substrate structure (rugosity and cover of substrate types), giant kelp density, and invertebrate density. Artificial reefs that were more similar in physical structure to natural reefs (low relief, low rugosity, and composed of small- to medium -sized boulders) supported fish assemblages that were similar to those on natural reefs. Fish species richness was not significantly different between artificial and natural reefs, but density and biomass tended to be higher on average on artificial reefs, body size was slightly smaller, and assemblage structure differed between the two reef types. Generally, artificial reefs extended higher off the seabed, were made of larger boulders, had higher rugosity, harboured more invertebrates, and supported less giant kelp. At both the within-reef (transect) and whole-reef scales, fish density and biomass were positively correlated with complex substrate structure, positively correlated with invertebrate density, and negatively correlated with giant kelp abundance, which was sparse or absent on most artificial reefs. Our results indicate that artificial reefs can support fish assemblages that are similar to those found on natural reefs if they are constructed to match the physical characteristics of natural reefs, or they can be made to exceed natural reefs in some regards at the expense of other biological attributes.


2011 ◽  
Vol 59 (spe1) ◽  
pp. 55-67 ◽  
Author(s):  
Heath Folpp ◽  
Michael Lowry ◽  
Marcus Gregson ◽  
Iain M. Suthers

Despite the long history of the development of artificial structures in NSW estuaries there are no studies that provide any comprehensive scientific evaluation of post-deployment goals. We assessed the effectiveness of estuarine artificial reefs as a fisheries enhancement initiative; described the diversity and abundance of species associated with them, and detailed the patterns of colonization and community development associated with an artificial reef deployment in Lake Macquarie, a large coastal barrier lagoon on the southeast coast of Australia. Six artificial reefs (one artificial reef group), constructed from artificial reef units (Reef Balls®), were deployed in December 2005 and sampled six times per season over two years using baited remote underwater video (BRUV). Colonization of the artificial reef group was relatively rapid with the majority of species identified over the two-year study period observed within the first year post-deployment. Overall, 27 species from 17 families were identified. Key colonising species included Pelates sexlineatus (Terapontidae), Acanthopagrus australis (Sparidae), Pagrus auratus (Sparidae) and Rhabdosargus sarba (Sparidae). Species richness showed evidence of potential seasonal fluctuations, being higher in warm water months (Summer/Autumn), and lower in the colder water months (Winter/Spring), while species diversity increased significantly with reef age. Fish assemblage composition remained relatively stable after the first year of sampling, with few discernible patterns in assemblage structure evident after the first year. Distinct separation in reef age groupings was evident during the second year of sampling; a pattern primarily driven by a decrease in abundance of P. sexlineatus, a result of the isolated nature of the artificial reefs and the interrelated effects of density dependence and predation.


Sign in / Sign up

Export Citation Format

Share Document