scholarly journals Influence of the type of measuring device in determining the static modulus of elasticity of concrete

2012 ◽  
Vol 5 (5) ◽  
pp. 555-575
Author(s):  
S. S. Araújo ◽  
G. N. Guimarães ◽  
A. L. B. Geyer

This paper presents a comparative analysis of the results obtained in static modulus of elasticity tests of plain concrete cylindrical specimens. The purpose of this study is to identify and evaluate the influence of several factors involved in modulus of elasticity tests such as the strain measurement device used (dial indicators, electrical surface bonded strain gages, externally fixed strain gages and linear variation displacement transducer - LVDT), the type of concrete (Class C30 and Class C60) and cylindrical specimen size (100 mm x 200 mm and 150 mm x 300 mm). The modulus tests were done in two different laboratories in the Goiânia, GO region and were performed according to code ABNT NBR 8522:2008, which describes the initial tangent modulus test, characterized by strains measured at tension values of 0.5 MPa and 30% of the ultimate load. One hundred and sixty specimens were tested with statistically satisfactory results. It was concluded that the type of strain measurement device greatly influenced the modulus of elasticity results. Tests in specimens 100 mm x 200 mm showed highest statistical variation.

2020 ◽  
Vol 70 (3) ◽  
pp. 370-377
Author(s):  
Cristian Grecca Turkot ◽  
Roy Daniel Seale ◽  
Edward D. Entsminger ◽  
Frederico José Nistal França ◽  
Rubin Shmulsky

Abstract The objective of this article is to evaluate the relationship between the dynamic modulus of elasticity (MOEd), which was obtained with acoustic-based nondestructive testing (NDT) methods, and static bending properties of two domestic hardwood oak species. The mechanical properties were conducted using static modulus of elasticity (MOE) and modulus of rupture (MOR) in radial and tangential directions. Mechanical tests were performed according to ASTM D143 on small clear, defect-free specimens from the two tree species: red oak (Quercus rubra) and white oak (Quercus alba). The MOEd was determined by two NDT methods and three longitudinal vibration methods based on the fast Fourier transform. The destructive strength values obtained in this study were within the expected range for these species. The MOE was best predicted by NDT methods for both species but also had a strong capability to predict MOR.


2011 ◽  
Vol 57 (3) ◽  
pp. 249-260 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

Abstract This study investigates the use of steel fibers and hybrid composite with a total fibers content of 2% on the high strength flowing concrete and determines the density, compressive strength, static modulus of elasticity, flexural strength and toughness indices for the mixes. The results show that the inclusion of more than 0.5% of palm fibers in hybrid fibers mixes reduces the compressive strength. The hybrid fibers can be considered as a promising concept and the replacement of a portion of steel fibers with palm fibers can significantly reduce the density, enhance the flexural strength and toughness. The results also indicates that the use of hybrid fibers (1.5 steel fibers + 0.5% palm fibers) in specimens increases significantly the toughness indices and thus the use of hybrid fibers combinations in reinforced concrete would enhance their flexural toughness & rigidity and enhance their overall performances


Holzforschung ◽  
2015 ◽  
Vol 69 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Shan Gao ◽  
Xiping Wang ◽  
Lihai Wang

Abstract The response of dynamic and static modulus of elasticity (MOEdyn and MOEsta) of red pine small clear wood (25.4×25.4×407 mm3) within the temperature range -40 to 40°C has been investigated. The moisture content (MC) of the specimens ranged from 0 to 118%. The MOEdyn was calculated based on measured ultrasonic velocity (V) and wood density. The MOEsta was measured by static bending tests in a climate chamber between -40 and 40°C. The results indicate that both MOEdyn and MOEsta were affected by temperature and the MC. Above freezing point, MOE decreased linearly at a slow rate with increasing temperature. Below freezing point, MOE increased at a rapid rate with decreasing temperature. The MC-level had a significant effect on the MOE-temperature relationships. Temperature effect was much more significant in green wood than in dry wood. Analytical models were developed to predict the change of MOEdyn relative to that at 20°C in the case of acoustic measurements under different temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document