Insecticide resistance and its impact on vector control

2016 ◽  
Author(s):  
Basil Desmond Brooke
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdou Talipouo ◽  
Konstantinos Mavridis ◽  
Elysée Nchoutpouen ◽  
Borel Djiappi-Tchamen ◽  
Emmanouil Alexandros Fotakis ◽  
...  

AbstractCulex mosquitoes particularly Culex quinquefasciatus are important arboviral and filariasis vectors, however despite this important epidemiological role, there is still a paucity of data on their bionomics. The present study was undertaken to assess the insecticide resistance status of Cx. quinquefasciatus populations from four districts of Yaoundé (Cameroon). All Culex quinquefasciatus populations except one displayed high resistance to bendiocarb and malathion with mortalities ranging from 0 to 89% while high resistance intensity against both permethrin and deltamethrin was recorded. Molecular analyses revealed high frequencies of the ACE-1 G119S mutation (ranging from 0 to 33%) and kdr L1014F allele (ranging from 55 to 74%) in all Cx. quinquefasciatus populations. Significant overexpression was detected for cytochrome P450s genes CYP6AA7 and CYP6Z10, as well as for Esterase A and Esterase B genes. The total cuticular hydrocarbon content, a proxy of cuticular resistance, was significantly increased (compared to the S-lab strain) in one population. The study confirms strong insecticide resistance mediated by different mechanisms in Cx. quinquefasciatus populations from the city of Yaoundé. The expansion of insecticide resistance in Culex populations could affect the effectiveness of current vector control measures and stress the need for the implementation of integrated vector control strategies in urban settings.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Pauline Winnie Orondo ◽  
Steven G. Nyanjom ◽  
Harrysone Atieli ◽  
John Githure ◽  
Benyl M. Ondeto ◽  
...  

Abstract Background Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. Methods The study was carried out in 2018–2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. Results Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8–84% to 83.3–78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1–16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. Conclusion Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides. Graphic abstract


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Sofia Balaska ◽  
Emmanouil A. Fotakis ◽  
Ilias Kioulos ◽  
Linda Grigoraki ◽  
Spyridoula Mpellou ◽  
...  

2019 ◽  
Vol 57 (3) ◽  
pp. 830-836
Author(s):  
Aryana Zardkoohi ◽  
David Castañeda ◽  
Juan C Lol ◽  
Carmen Castillo ◽  
Francisco Lopez ◽  
...  

Abstract Aedes aegypti (Linnaeus, 1762) is considered the most important mosquito vector species for several arboviruses (e.g., dengue, chikungunya, Zika) in Costa Rica. The primary strategy for the control and prevention of Aedes-borne diseases relies on insecticide-based vector control. However, the emergence of insecticide resistance in the mosquito populations presents a significant threat to these prevention actions. The characterization of the mechanisms driving the insecticide resistance in Ae. aegypti is vital for decision making in vector control programs. Therefore, we analyzed the voltage-gated sodium channel (VGSC) gene for the presence of the V1016I and F1534C kdr mutations in Ae. aegypti populations from Puntarenas and Limon provinces, Costa Rica. The CDC bottle bioassays showed that both Costa Rican Ae. aegypti populations were resistant to permethrin and deltamethrin. In the case of kdr genotyping, results revealed the co-occurrence of V1016I and F1534C mutations in permethrin and deltamethrin-resistant populations, as well as the fixation of the 1534C allele. A strong association between these mutations and permethrin and deltamethrin resistance was found in Puntarenas. Limon did not show this association; however, our results indicate that the Limon population analyzed is not under the same selective pressure as Puntarenas for the VGSC gene. Therefore, our findings make an urgent call to expand the knowledge about the insecticide resistance status and mechanisms in the Costa Rican populations of Ae. aegypti, which must be a priority to develop an effective resistance management plan.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Ashok K. Mishra ◽  
Praveen K. Bharti ◽  
Anup Vishwakarma ◽  
Sekh Nisar ◽  
Harsh Rajvanshi ◽  
...  

Abstract Background Understanding of malaria vector density, distribution, insecticide resistance, vector incrimination, infection status, and identification of sibling species are some of the essential components of vector control measures for achieving malaria elimination goals. Methods As part of the malaria elimination demonstration project, entomological surveillance was carried out from October 2017 to October 2019 by collecting indoor resting mosquitoes using hand catch method. Susceptibility test was done for determining the insecticide resistance status of vector mosquito Anopheles culicifacies using standard protocols by the World Health Organization. The cone bioassay method was used for determining the efficacy and quality of insecticide sprayed. Mosquitoes collected from different ecotypes were identified and processed for parasite identification, vector incrimination and sibling species determination. Results The two known malaria vector species (Anopheles culicifacies and Anopheles fluviatilis) were found in the study area, which have been previously reported in this and adjoining areas of the State of Madhya Pradesh. The prevalence of An. culicifacies was significantly higher in all study villages with peak in July while lowest number was recorded in May. Proportion of vector density was observed to be low in foothill terrains. The other anopheline species viz, Anopheles subpictus, Anopheles annularis, Anopheles vagus, Anopheles splendidus, Anopheles pallidus, Anopheles nigerrimus and Anopheles barbirostris were also recorded in the study area, although their prevalence was significantly less compared to the An. culicifacies. In 2017, An. culicifacies was found to be resistant to dichloro-diphenyl-trichloroethane (DDT) and malathion, with possible resistance to alphacypermethrin and susceptible to deltamethrin. However, in 2019, the species was found to be resistant to alphacypermethrin, DDT, malathion, with possible resistance to deltamethrin. The bioassays revealed 82 to > 98% corrected % mortality of An. culicifacies on day-one post-spraying and 35 to 62% on follow-up day-30. Anopheles culicifacies sibling species C was most prevalent (38.5%) followed by A/D and E while B was least pre-dominant (11.9%). Anopheles fluviatilis sibling species T was most prevalent (74.6%) followed by U (25.4%) while species S was not recorded. One An.culicifacies (sibling species C) was found positive for Plasmodium falciparum by PCR tests in the mosquitoes sampled from the test areas. Conclusion Based on the nine entomologic investigations conducted between 2017–2019, it was concluded that An. culicifacies was present throughout the year while An. fluviatilis had seasonal presence in the study areas. Anopheles culicifacies was resistant to alphacypermethrin and emerging resistance to deltamethrin was observed in this area. Anopheles culicifacies was confirmed as the malaria vector. This type of information on indigenous malaria vectors and insecticide resistance is important in implementation of vector control through indoor residual spraying (IRS) and use of insecticide-impregnated bed nets for achieving the malaria elimination goals.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Eunice Oluwatobiloba Adedeji ◽  
Olubanke Olujoke Ogunlana ◽  
Segun Fatumo ◽  
Thomas Beder ◽  
Yvonne Ajamma ◽  
...  

Abstract The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.


Sign in / Sign up

Export Citation Format

Share Document