scholarly journals Co-occurrence of kdr Mutations V1016I and F1534C and Its Association With Phenotypic Resistance to Pyrethroids in Aedes aegypti (Diptera: Culicidae) Populations From Costa Rica

2019 ◽  
Vol 57 (3) ◽  
pp. 830-836
Author(s):  
Aryana Zardkoohi ◽  
David Castañeda ◽  
Juan C Lol ◽  
Carmen Castillo ◽  
Francisco Lopez ◽  
...  

Abstract Aedes aegypti (Linnaeus, 1762) is considered the most important mosquito vector species for several arboviruses (e.g., dengue, chikungunya, Zika) in Costa Rica. The primary strategy for the control and prevention of Aedes-borne diseases relies on insecticide-based vector control. However, the emergence of insecticide resistance in the mosquito populations presents a significant threat to these prevention actions. The characterization of the mechanisms driving the insecticide resistance in Ae. aegypti is vital for decision making in vector control programs. Therefore, we analyzed the voltage-gated sodium channel (VGSC) gene for the presence of the V1016I and F1534C kdr mutations in Ae. aegypti populations from Puntarenas and Limon provinces, Costa Rica. The CDC bottle bioassays showed that both Costa Rican Ae. aegypti populations were resistant to permethrin and deltamethrin. In the case of kdr genotyping, results revealed the co-occurrence of V1016I and F1534C mutations in permethrin and deltamethrin-resistant populations, as well as the fixation of the 1534C allele. A strong association between these mutations and permethrin and deltamethrin resistance was found in Puntarenas. Limon did not show this association; however, our results indicate that the Limon population analyzed is not under the same selective pressure as Puntarenas for the VGSC gene. Therefore, our findings make an urgent call to expand the knowledge about the insecticide resistance status and mechanisms in the Costa Rican populations of Ae. aegypti, which must be a priority to develop an effective resistance management plan.

2019 ◽  
Author(s):  
Aryana Zardkoohi ◽  
David Castañeda ◽  
Carmen Castillo ◽  
Juan C Lol ◽  
Francisco Lopez ◽  
...  

AbstractAedes aegypti (Linnaeus, 1762) is considered the most important mosquito vector species for several arboviruses (e.g., dengue, chikungunya, Zika) in Costa Rica. The main strategy for the control and prevention of Aedes-borne diseases relies on insecticide-based vector control. However, the emergence of insecticide resistance in the mosquito populations present a big threat for the prevention actions. The characterization of the mechanisms driving the insecticide resistance in Ae. aegypti are vital for decision making in vector control programs. Therefore, we analyzed the voltage-gated sodium channel gene for the presence of the V1016I and F1534C kdr mutations in pyrethroid-resistant Ae. aegypti populations from Puntarenas and Limon provinces, Costa Rica. The CDC bottle bioassays showed that both Costa Rican Ae. aegypti populations were resistant to permethrin and deltamethrin. In the case of kdr genotyping, results revealed the co-occurrence of V1016I and F1534C mutations in permethrin and deltamethrin-resistant populations, as well as the fixation of the 1534C allele. Therefore, our findings make an urgent call to expand the knowledge about the insecticide resistance status and mechanisms in the Costa Rican populations of Ae. aegypti which must be a priority to develop an effective resistance management plan.


2020 ◽  
Vol 8 (1) ◽  
pp. 54-68
Author(s):  
Deswandi W. S. Berri ◽  
Julianty Almet ◽  
Diana Agustiani Wuri

Dengue hemorrhagic fever (DHF) is a disease that is found in some tropical and subtropical regions. This disease is caused by dengue virus and is transmitted to humans through the bite of the Aedes aegypti mosquito. the solution taken in controlling DHF is to break the life cycle of the Aedes aegypti mosquito. Vector control is generally carried out using synthetic larvicides, namely abate / temefos, but the use of abate can cause residues, environmental pollution, poisoning and resistance of the eradicated vectors so that natural larvasides from plants are needed namely temulawak rhizome (Curcuma xanthorrhiza Roxb.) for vector control. The purpose of this study was to determine whether temulawak rhizome extract was effective or not in killing Aedes aegypti larvae. This research method includes larva collection, identification and maintenance of mosquitoes, determining sample size, making extracts and testing effectiveness. This study used a control and experiment group with 3 repetitions in the minutes to 15, 30, 45, 60 and 1440 (24 Hours). The control group was positive control using abate and negative control using aquades while the eksperiment group used extract of temulawak rhizome (Curcuma xanthorrhiza Roxb.) with concentrations of 0.6%, 0.8%, 1%, 1.2% and 1.5%. The results of this study indicate that the temulawak rhizome extract (Curcuma xanthorrhiza Roxb.) effective as larvicides because at the lowest concentration 0.6% can kill 100% Aedes aegypti larvae.


2021 ◽  
Vol 10 (1) ◽  
pp. 100-109
Author(s):  
Arniyati Versari ◽  
Dyah Mahendrasari Sukendra ◽  
Shobiechah Aldillah Wulandhari

Ambarawa Sub District Semarang District is an endemic area of DHF. Furthermore, the year 2019 recorded an increase in the IR and CFR by 271.73, and 1.123% respectively. Insecticide resistance contributed to the increase in DHF cases. Therefore, this study aims to determine the description of community behavior concerning the use of household and agricultural insecticide which lead to insecticide resistance in Aedes aegypti. This type of research is descriptive using qualitative methods. The informants are insecticide users in Ambarawa subdistrict. Twenty-four sample is choosen by purposive sampling. In-depth interview is carried out for the data collection. Data analysis used is data reduction, data presentation, and data verification using the manual way. As the result of the study, most of the subjects experienced a decrease in the effectiveness of insecticides, caused by poor community knowledge, and behavior of people who did not apply any insecticide resistance management guidelines. Considering the condition of current insecticide circulation, the government needs to make policies relating to the management of insecticide resistance


2021 ◽  
Author(s):  
Christopher Mfum Owusu-Asenso ◽  
Julius Abraham Addo Mingle ◽  
David Weetman ◽  
Yaw Asare Afrane

Abstract Background: Vector control is the main intervention to control arboviral diseases transmitted by Aedes mosquitoes because for most there are no effective vaccines or treatment. This vector control relies heavily on the use of insecticides, effectiveness of which may be impacted by resistance. In addition, rational insecticide application requires detailed knowledge of vector distribution, dynamics, resting, and feeding behaviours, which are poorly understood for Aedes vectors in Africa. This study investigated the spatio-temporal distribution and insecticide resistance status of Ae. aegypti from across ecological extremes of GhanaMethods: Immature mosquitoes were sampled from containers in and around human dwellings at each of seven study sites in urban, suburban, and rural areas of Ghana. Adult Aedes mosquitoes were sampled indoor and outdoor using Biogent sentinel-2 mosquito traps, human landing catches, and prokopack aspiration. Distributions of immatures and adult Aedes mosquitoes were determined indoors and outdoors during dry and rainy seasons at all sites. Phenotypic resistance status of Aedes mosquitoes to insecticides was determined using WHO bioassays. Host blood meal source was determined by PCR.Results: A total of 16,711 immature Aedes were sampled, with over 70% found in car tires. Significantly more breeding containers had Aedes immatures during the rainy season 70.95% (11,856) compared to the dry season 29.05% (4,855). A total of 1,895 adult Aedes mosquitos were collected, including Ae. aegypti (97.8%), Ae. africanus (2.1%) and Ae. Luteocephalus (0.1%). Indoor sampling of adult Aedes mosquitoes yielded a total of 381 (20.1%) and outdoor a total of 1,514 (79.9%) (z = -5.427; p = 0.0000) over the entire sampling period. Aedes aegypti populations were resistant to DDT at all study sites. Vectors showed suspected resistance to Bendiocarb (96-97%), Permethrin (90-96%) and Deltamethrin (91-96%) and were susceptible to the organophosphate malathion from all study sites.Blood meal analysis showed that the Aedes mosquitoes were mostly anthropophilic with HBI of 0.9 i.e. [(human = 90%), (human and dog = 5%), (dog and cow = 5%)].Conclusion: Aedes mosquitoes were found at high densities in all ecological zones of Ghana. Resistance to pyrethroids and carbamates may limit control efficacy and requires careful monitoring.


2021 ◽  
Vol 21 (3) ◽  
pp. 1124-1140
Author(s):  
Mohd Rohaizat Hassan ◽  
Noor Atika Azit ◽  
Suhaiza Mohd Fadzil ◽  
Siti Rasidah Abd Ghani ◽  
Norfazilah Ahmad ◽  
...  

Background: The insecticides used widely has led to resistance in the vector and impose a challenge to vector control op- eration. Objectives: This review aims to analyse the distribution of insecticide resistance of dengue vectors in South East Asia and to describe the mechanism of insecticide resistance. Methods: Literature search for articles published on 2015 to 2019 from PubMed, Scopus and ProQuest was performed. Total of 37 studies included in the final review from the initial 420 studies. Results: Pyrethroid resistance was concentrated on the west coast of Peninsular Malaysia and Northern Thailand and scat- tered at Java Island, Indonesia while organophosphate resistance was seen across the Java Island (Indonesia), West Sumatera and North Peninsular Malaysia. Organochlorine resistance was seen in Sabah, Malaysia and scattered distribution in Nusa Tenggara, Indonesia. V1016G, S989P, F1269C gene mutation in Aedes Aegypti were associated with Pyrethroid resistance in Singapore and Indonesia. In Malaysia, over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) Glutathione S-transferases, carboxylesterases commonly associated with pyrethroids resistance in Aedes Aegypti and CYP612 overexpressed in Aedes Albopictus. The genetic mutation in A302S in Aedes Albopictus was associated with organochlorine resistance in Malaysia. Conclusions: Rotation of insecticide, integration with synergist and routine assessment of resistance profile are recom- mended strategies in insecticide resistance management. Keywords: Insecticide resistance; vector management; Aedes; pyrethroid; mortality.


2020 ◽  
Vol 8 (15) ◽  
pp. 23-28
Author(s):  
Amparo Gabriela Hernández Ramos

Dengue is an infectious disease with high rates of morbidity and mortality, transmitted by the bite of the female mosquito of the genus Aedes aegypti, vector distributed in tropical and subtropical areas throughout the world. America is one of the most affected regions. This vector is controlled through insecticides that due to its constant use in populations, a resistance phenomenon has been produced. The objective of this review is to identify the situation of insecticide resistance in populations of Aedes aegypti in Latin American countries. In this region, several insecticides have been used for vector control; in the last 10 years insecticides of the pyrethroid and organophosphorus group have been used as adulticides for the control of the mosquito, conditioning resistance. Some insecticides such as organophosphates and deltamethrin, despite of not being intensively used in Latin American countries, also show resistance. Improvements in vector control are required, including the rotation of the insecticides during the different seasons, as well as innovating techniques and forms of vector control


2021 ◽  
Vol 15 (7) ◽  
pp. e0009587
Author(s):  
Ivana Sierra ◽  
Jose Manuel Latorre-Estivalis ◽  
Lucila Traverso ◽  
Paula V. Gonzalez ◽  
Ariel Aptekmann ◽  
...  

Background Aedes aegypti (L.) is an urban mosquito, vector of several arboviruses that cause severe diseases in hundreds of million people each year. The resistance to synthetic insecticides developed by Ae. aegypti populations worldwide has contributed to failures in vector control campaigns, increasing the impact of arbovirus diseases. In this context, plant-derived essential oils with larvicidal activity could be an attractive alternative for vector control. However, the mode of action and the detoxificant response of mosquitoes to plant derived compounds have not been established, impairing the optimization of their use. Methods and findings Here we compare gene expression in Ae. aegypti larvae after 14 hrs of exposure to Eucalyptus camaldulensis essential oil with a control group exposed to vehicle (acetone) for the same lapse, by using RNA-Seq. We found differentially expressed genes encoding for cuticle proteins, fatty-acid synthesis, membrane transporters and detoxificant related gene families (i.e. heat shock proteins, cytochromes P450, glutathione transferases, UDP-glycosyltransferases and ABC transporters). Finally, our RNA-Seq and molecular docking results provide evidence pointing to a central involvement of chemosensory proteins in the detoxificant response in mosquitoes. Conclusions and significance Our work contributes to the understanding of the physiological response of Ae. aegypti larvae to an intoxication with a natural toxic distilled from Eucalyptus leafs. The results suggest an involvement of most of the gene families associated to detoxification of xenobiotics in insects. Noteworthy, this work provides important information regarding the implication of chemosensory proteins in the detoxification of a natural larvicide. Understanding the mode of detoxification of Eucalyptus distilled compounds could contribute to their implementation as a tool in mosquito control.


2021 ◽  
Vol 15 (3) ◽  
pp. e0009205
Author(s):  
Rosilawati Rasli ◽  
Yoon Ling Cheong ◽  
M. Khairuddin Che Ibrahim ◽  
Siti Futri Farahininajua Fikri ◽  
Rusydi Najmuddin Norzali ◽  
...  

Background In Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance. Method and results The insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species. Conclusion The present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Zalalham Al-Koleeby ◽  
Ahmed El Aboudi ◽  
Mithaq Assada ◽  
Mohamed Al-Hadi ◽  
Mohammed Abdalr Ahman ◽  
...  

Control of malaria vectors in Yemen relies on both indoor residual spraying using carbamate (bendiocarb) and long-lasting pyrethroids-treated nets. This paper reports the results of studies conducted to monitor the insecticide resistance of the main malaria vector, Anopheles arabiensis, to the insecticides currently used in the vector control in four different locations. Susceptibility tests were performed following the WHO test procedures. Two pyrethroids (lambda-cyhalothrin 0.05% and deltamethrin 0.05%) and one carbamate (bendiocarb 0.1%) were tested at diagnostic doses (DD). The five-fold DD of lambda-cyhalothrin and deltamethrin (0.25%) were also used to yield information on the intensity of resistance. Besides, tests with synergists were performed to assess the involvement of detoxifying enzyme in the phenotypic resistance of the populations of An. arabiensis to pyrethroids. The results of the performed susceptibility bioassay showed that the vector is susceptible to bendiocarb and resistant to lambda-cyhalothrin and deltamethrin in the four studied areas. The pyrethroids resistance is solely metabolic. This information could help policy-makers to plan insecticide resistance management. Bendiocarb is still an effective insecticide in the form of IRS. Concerning LLINS, it would be interesting to assess their effectiveness, combining a pyrethroid with PBO for the control of the pyrethroid-resistant malaria vector.


Sign in / Sign up

Export Citation Format

Share Document