scholarly journals Anopheles metabolic proteins in malaria transmission, prevention and control: a review

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Eunice Oluwatobiloba Adedeji ◽  
Olubanke Olujoke Ogunlana ◽  
Segun Fatumo ◽  
Thomas Beder ◽  
Yvonne Ajamma ◽  
...  

Abstract The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdou Talipouo ◽  
Konstantinos Mavridis ◽  
Elysée Nchoutpouen ◽  
Borel Djiappi-Tchamen ◽  
Emmanouil Alexandros Fotakis ◽  
...  

AbstractCulex mosquitoes particularly Culex quinquefasciatus are important arboviral and filariasis vectors, however despite this important epidemiological role, there is still a paucity of data on their bionomics. The present study was undertaken to assess the insecticide resistance status of Cx. quinquefasciatus populations from four districts of Yaoundé (Cameroon). All Culex quinquefasciatus populations except one displayed high resistance to bendiocarb and malathion with mortalities ranging from 0 to 89% while high resistance intensity against both permethrin and deltamethrin was recorded. Molecular analyses revealed high frequencies of the ACE-1 G119S mutation (ranging from 0 to 33%) and kdr L1014F allele (ranging from 55 to 74%) in all Cx. quinquefasciatus populations. Significant overexpression was detected for cytochrome P450s genes CYP6AA7 and CYP6Z10, as well as for Esterase A and Esterase B genes. The total cuticular hydrocarbon content, a proxy of cuticular resistance, was significantly increased (compared to the S-lab strain) in one population. The study confirms strong insecticide resistance mediated by different mechanisms in Cx. quinquefasciatus populations from the city of Yaoundé. The expansion of insecticide resistance in Culex populations could affect the effectiveness of current vector control measures and stress the need for the implementation of integrated vector control strategies in urban settings.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Issa N. Lyimo ◽  
Kija R. Ng'habi ◽  
Monica W. Mpingwa ◽  
Ally A. Daraja ◽  
Dickson D. Mwasheshe ◽  
...  

Background.Anopheles arabiensisis increasingly dominating malaria transmission in Africa. The exophagy in mosquitoes threatens the effectiveness of indoor vector control strategies. This study aimed to evaluate the effectiveness of fungus againstAn. arabiensiswhen applied on cattle and their environments.Methods. Experiments were conducted under semi-field and small-scale field conditions within Kilombero valley. The semi-field reared females of 5–7 days oldAn. arabiensiswere exposed to fungus-treated and untreated calf. Further, wildAn. arabiensiswere exposed to fungus-treated calves, mud-huts, and their controls. Mosquitoes were recaptured the next morning and proportion fed, infected, and survived were evaluated. Experiments were replicated three times using different individuals of calves.Results. A high proportion ofAn. arabiensiswas fed on calves (>0.90) and become infected (0.94) while resting on fungus-treated mud walls than on other surfaces. However, fungus treatments reduced fecundity and survival of mosquitoes.Conclusion. This study demonstrates for the first time the potential of cattle and their milieu for controllingAn. arabiensis. Most ofAn. arabiensiswere fed and infected while resting on fungus-treated mud walls than on other surfaces. Fungus treatments reduced fecundity and survival of mosquitoes. These results suggest deployment of bioinsecticide zooprophylaxis against exophilicAn. arabiensis.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Moussa Keïta ◽  
Sidy Doumbia ◽  
Ibrahim Sissoko ◽  
Mahamoudou Touré ◽  
Sory Ibrahim Diawara ◽  
...  

Abstract Background Implementation and upscale of effective malaria vector control strategies necessitates understanding the multi-factorial aspects of transmission patterns. The primary aims of this study are to determine the vector composition, biting rates, trophic preference, and the overall importance of distinguishing outdoor versus indoor malaria transmission through a study at two communities in rural Mali. Methods Mosquito collection was carried out between July 2012 and June 2016 at two rural Mali communities (Dangassa and Koïla Bamanan) using pyrethrum spray-catch and human landing catch approaches at both indoor and outdoor locations. Species of Anopheles gambiae complex were identified by polymerase chain reaction (PCR). Enzyme-Linked -Immuno-Sorbent Assay (ELISA) were used to determine the origin of mosquito blood meals and presence of Plasmodium falciparum sporozoite infections. Results A total of 11,237 An. gambiae sensu lato (s.l.) were collected during the study period (5239 and 5998 from the Dangassa and Koïla Bamanan sites, respectively). Of the 679 identified by PCR in Dangassa, Anopheles coluzzii was the predominant species with 91.4% of the catch followed by An. gambiae (8.0%) and Anopheles arabiensis (0.6%). At the same time in Koïla Bamanan, of the 623 An. gambiae s.l., An. coluzzii accounted for 99% of the catch, An. arabiensis 0.8% and An. gambiae 0.2%. Human Blood Index (HBI) measures were significantly higher in Dangassa (79.4%; 95% Bayesian credible interval (BCI) [77.4, 81.4]) than in Koïla Bamanan (15.9%; 95% BCI [14.7, 17.1]). The human biting rates were higher during the second half of the night at both sites. In Dangassa, the sporozoite rate was comparable between outdoor and indoor mosquito collections. For outdoor collections, the sporozoite positive rate was 3.6% (95% BCI [2.1–4.3]) and indoor collections were 3.1% (95% BCI [2.4–5.0]). In Koïla Bamanan, the sporozoite rate was higher indoors at 4.3% (95% BCI [2.7–6.3]) compared with outdoors at 2.4% (95% BCI [1.1–4.2]). In Dangassa, corrected entomological inoculation rates (cEIRs) using HBI were 13.74 [95% BCI 9.21–19.14] infective bites/person/month (ib/p/m) at indoor, and 18.66 [95% BCI 12.55–25.81] ib/p/m at outdoor. For Koïla Bamanan, cEIRs were 1.57 [95% BCI 2.34–2.72] ib/p/m and 0.94 [95% BCI 0.43–1.64] ib/p/m for indoor and outdoor, respectively. EIRs were significantly higher at the Dangassa site than the Koïla Bamanan site. Conclusion The findings in this work may indicate the occurrence of active, outdoor residual malaria transmission is comparable to indoor transmission in some geographic settings. The high outdoor transmission patterns observed here highlight the need for additional strategies to combat outdoor malaria transmission to complement traditional indoor preventive approaches such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) which typically focus on resting mosquitoes.


1997 ◽  
Vol 71 (2) ◽  
pp. 91-101 ◽  
Author(s):  
B. Boatin ◽  
D.H. Molyneux ◽  
J.M. Hougard ◽  
O.W. Christensen ◽  
E.S. Alley ◽  
...  

AbstractThis paper summarizes the work of the Onchocerciasis Control Programme (OCP) in West Africa, a programme which over a 22 year history has reduced the public health problems of blinding onchocerciasis in eleven countries of West Africa through vector control and, more recently, ivermectin distribution. The paper emphasizes the different approaches to control the programme has developed in the different parts of the programme area which have been determined by the epidemiology of the disease (savanna/forest form), the migratory characteristics of the vectors, intensity of the disease before commencement of treatment, the combined impact of vector control and ivermectin and the likelihood of infiltration of infective blackflies from outside the programme area. The programme has constantly monitored the impact of operations on the trends in prevalence, incidence, annual transmission potential, ocular morbidity and species of fly populations, and as a result, has identified areas where special interventions are required until the programme comes to an end in 2002. The paper illustrates the changes in intensity of infection as measured by community microfilarial load and annual transmission potential over the duration of the programme control activities. The paper also defines and justifies the control strategies in different areas and identifies areas for special interventions.


2020 ◽  
Author(s):  
Prashanth Selvaraj ◽  
Edward A. Wenger ◽  
Daniel Bridenbecker ◽  
Nikolai Windbichler ◽  
Jonathan R. Russell ◽  
...  

AbstractVector control has been a key component in the fight against malaria for decades, and chemical insecticides are critical to the success of vector control programs worldwide. However, increasing resistance to insecticides threatens to undermine these efforts. Understanding the evolution and propagation of resistance is thus imperative to mitigating loss of intervention effectiveness. Additionally, accelerated research and development of new tools that can be deployed alongside existing vector control strategies is key to eradicating malaria in the near future. Methods such as gene drives that aim to genetically modify large mosquito populations in the wild to either render them refractory to malaria or impair their reproduction may prove invaluable tools. Mathematical models of gene flow in populations, which is the transfer of genetic information from one population to another through migration, can offer invaluable insight into the behavior and potential impact of gene drives as well as the spread of insecticide resistance in the wild. Here, we present the first multi-locus, agent-based model of vector genetics that accounts for mutations and a many-to-many mapping cardinality of genotypes to phenotypes to investigate gene flow, and the propagation of gene drives in Anopheline populations. This model is embedded within a large scale individual-based model of malaria transmission representative of a high burden, high transmission setting characteristic of the Sahel. Results are presented for the selection of insecticide-resistant vectors and the spread of resistance through repeated deployment of insecticide treated nets (ITNs), in addition to scenarios where gene drives act in concert with existing vector control tools such as ITNs. The roles of seasonality, spatial distribution of vector habitat and feed sites, and existing vector control in propagating alleles that confer phenotypic traits via gene drives that result in reduced transmission are explored. The ability to model a spectrum of vector species with different genotypes and phenotypes in the context of malaria transmission allows us to test deployment strategies for existing interventions that reduce the deleterious effects of resistance and allows exploration of the impact of new tools being proposed or developed.Author summaryVector control interventions are essential to the success of global malaria control and elimination efforts but increasing insecticide resistance worldwide threatens to derail these efforts. Releasing genetically modified mosquitoes that use gene drives to pass on desired genes and their associated phenotypic traits to the entire population within a few generations has been proposed to address resistance and other issues such as transmission heterogeneity that can sustain malaria transmission indefinitely. While the ethics and safety of these methods are being debated, mathematical models offer an efficient way of predicting the behavior and estimating the efficacy of these interventions if deployed to specific regions facing challenges to reaching elimination. We have developed a detailed mathematical model of vector genetics where specific genomes code for physical attributes that influence transmission and are affected by the surrounding environment. This is the first model to incorporate an individual-based multi-locus genetic model into a detailed individual-based model of malaria transmission. This model opens the door to investigate a number of subtle but important questions such as the effects of small numbers of mosquitoes in a region sustaining malaria transmission during the low transmission season, and the success of gene drives in regions where extant vector control interventions could kill off gene drive mosquitoes before establishment. Here, we investigate the reduced efficacy of current vector control measures in the presence of insecticide resistance and evaluate the likelihood of achieving local malaria elimination using gene drive mosquitoes released into a high transmission setting alongside other vector control measures.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Takaki Shimono ◽  
Seiji Kanda ◽  
Pheophet Lamaningao ◽  
Yuki Murakami ◽  
Andrew Waleluma Darcy ◽  
...  

Abstract Background Aedes aegypti, which is widely distributed in the Lao People’s Democratic Republic (PDR), is the primary vector of arboviral diseases. Chemical insecticides have been intensively used to eliminate mosquito-borne diseases, resulting in the development of insecticide resistance. However, little is known about the insecticide resistance of mosquito populations in Lao PDR and the mechanisms responsible for it, which have important implications for vector management programs. Here, we examined the phenotypic and haplotypic profiles of insecticide resistance in populations of Ae. aegypti larvae from central Lao PDR. Methods Ae. aegypti larvae were collected from four sites in Lao PDR, and their susceptibility to temephos, deltamethrin, permethrin, and Bacillus thuringiensis israelensis (Bti) was tested using larval bioassays. Synergistic tests were also conducted to evaluate the activity of insecticide-metabolizing enzymes in the larvae. Deltamethrin-resistant and Deltamethrin-susceptible larvae were then genotyped for knockdown resistance (kdr) mutations to determine the associations between each genotype and resistance. Results Ae. aegypti larvae from central Lao PDR were considered to be “resistant” (<98% mortality) to organophosphates and pyrethroids. The bio-insecticide Bti remains effective against such larvae. The resistance mechanisms of Ae. aegypti larvae were found to vary among populations, especially for pyrethroid resistance. Kdr mutations were significantly associated with deltamethrin resistance in Ae. aegypti from the Xaythany population. In contrast, synergist assays with piperonyl butoxide suggested that cytochrome P450 monooxygenases played an important role in the resistance seen in the Khounkham and Thakhek populations. Conclusion This study obtained information that will aid the design and implementation of insecticide-based vector management of Ae. aegypti in central Lao PDR. Ae. aegypti larvae from central Lao PDR were highly susceptible to Bti, while they were resistant to temephos at a diagnostic dose of 0.0286 mg/L. Given the limited number of insecticides that are approved for vector control, it is important to alternate between temephos and other larvicides, such as Bti and pyriproxyfen. The differences in pyrethroid resistance mechanisms seen among the Ae. aegypti populations highlight the need to tailor vector-control strategies to each region to increase the success of dengue control in Lao PDR.


2021 ◽  
Author(s):  
Moussa KEITA ◽  
Sidy Doumbia ◽  
Ibrahim Sissoko ◽  
Mahamoudou Touré ◽  
Sory Ibrahim Diawara ◽  
...  

Abstract Background: Implementation and upscale of effective malaria vector control strategies necessitates understanding the multi-factorial aspects of transmission patterns. The primary aims of this study are to determine the vector composition, biting rates, trophic preference, and the overall importance of distinguishing outdoor versus indoor malaria transmission through a study at two communities in rural Mali. Methods: Mosquito collection was carried out between July 2012 and June 2016 at two rural Mali communities (Dangassa and Koïla Bamanan) using pyrethrum spray-catch and human landing catch approaches at both indoor and outdoor locations. Species of Anopheles (An.) gambiae complex were identified by polymerase chain reaction (PCR). Enzyme-Linked -Immuno-Sorbent Assay (ELISA) were used to determine the origin of mosquito blood meals and presence of Plasmodium (P.) falciparum sporozoite infections.Results: A total of 11,237 An. gambiae (s.l.) were collected during the study period (5,239 and 5,998 from the Dangassa and Koïla Bamanan sites, respectively). Of the 679 identified by PCR in Dangassa, An. coluzzii was the predominant species with 91.4% of the catch followed by An. gambiae (8.0%) and An. arabiensis (0.6%). At the same time in Koïla Bamanan, of 623 An. gambiae s.l., An. coluzzii accounted for 99% of the catch, An. arabiensis 0.8% and An. gambiae 0.2%. Human Blood Index (HBI) measures were significantly higher in Dangassa (79.4%; 95% Bayesian credible interval (BCI) [77.4, 81.4]) than in Koïla Bamanan (15.9%; 95% BCI [14.7, 17.1]). The human biting rates were higher during the second half of the night at both sites. In Dangassa, the sporozoite rate was comparable between outdoor and indoor mosquito collections. For outdoor collections, the sporozoite positive rate was 3.6% (95% BCI [2.1-4.3]) and indoor collections were 3.1% (95% BCI [2.4-5.0]). In Koïla Bamanan, the sporozoite rate was higher indoors at 4.3% (95% BCI [2.7-6.3]) compared with outdoors at 2.4% (95% BCI [1.1- 4.2]). In Dangassa, corrected entomological inoculation rates (cEIRs) using HBI were 13.74 [95% BCI: 9.21—19.14] infective bites/person/month (ib/p/m) at indoor, and 18.66 [95% BCI 12.55—25.81] ib/p/m at outdoor. For Koïla Bamanan, cEIRs were 1.57 [95% BCI 2.34 —2.72] ib/p/m and 0.94 [95% BCI 0.43—1.64] ib/p/m for indoor and outdoor, respectively. EIRs were significantly higher at the Dangassa site than the Koïla Bamanan site.Conclusion: The findings in this work may indicate the occurrence of active, outdoor residual malaria transmission is comparable to indoor transmission in some geographic settings. The high outdoor transmission patterns observed here highlight the need for additional strategies to combat outdoor malaria transmission to complement traditional indoor preventive approaches such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) which typically focus on resting mosquitoes.


2019 ◽  
Author(s):  
André SOMINAHOUIN ◽  
Germain Gil Padonou ◽  
Rodrigue Landéhou ◽  
Albert Sourou Salako ◽  
Hermann Sagbohan ◽  
...  

Abstract Background: Climate variability influence the diversity and abundance of malaria vectors and thereby on malaria transmission dynamics. Examine its effect on Anopheles parameters involved in transmission may predict the potential malaria hotspot as a right target for its control intervention strategies. Here, we investigated the influence of meteorological parameters on the aggressiveness and infectivity of Anopheles in two health districts zones where IRS has been extended in Northern Benin. Methods: Mosquito collections were carried out using human landing catches to evaluate rates of aggression and infectivity in twelve villages. Concomitantly, meteorological data from synoptic stations of Benin and neighbouring countries were collected in 2016-2017. Results: The spatial distribution of infective bites of An. gambiae is characterized by an intense aggression in the rural villages of the study area. Analysis of variances showed significant HBR difference according to the period but not according to the locality. However, the same analysis carried out with the infectivity rate shows no significant difference according to the period and the locality. In addition, the number of infective bites per man per month is higher in August and October, and the climatic parameters that have mainly favoured aggression are wind speed, humidity, sunshine and temperature. Indeed, the peak of wind speed is concentrated around 1.2 km / h and in September (5 km / h) whereas the aggressiveness score of Anopheles in the region is greater than 10 infective bites per man a year. Conclusion Malaria transmission by Anopheles is influenced by climatic factors. The climate observed in the districts where IRS was extended in northern Benin has a real impact on Anopheles density and weakens current and future vector control strategies. This could lead to a series of modifications observed in anopheline populations just after IRS implementation ranging from a tendency to exophagy, from a decrease in the rate of blood-feeding to changes in the time, and change in aggressiveness. These phenomena most likely contribute to the sustainability of malaria transmission despite vector control measures. Keywords: Infectivity, aggression, Climate, Anopheles gambiae ( s.l. ), IRS, Benin.


Sign in / Sign up

Export Citation Format

Share Document