scholarly journals Precision-Recall versus Accuracy and the Role of Large Data Sets

Author(s):  
Brendan Juba ◽  
Hai S. Le

Practitioners of data mining and machine learning have long observed that the imbalance of classes in a data set negatively impacts the quality of classifiers trained on that data. Numerous techniques for coping with such imbalances have been proposed, but nearly all lack any theoretical grounding. By contrast, the standard theoretical analysis of machine learning admits no dependence on the imbalance of classes at all. The basic theorems of statistical learning establish the number of examples needed to estimate the accuracy of a classifier as a function of its complexity (VC-dimension) and the confidence desired; the class imbalance does not enter these formulas anywhere. In this work, we consider the measures of classifier performance in terms of precision and recall, a measure that is widely suggested as more appropriate to the classification of imbalanced data. We observe that whenever the precision is moderately large, the worse of the precision and recall is within a small constant factor of the accuracy weighted by the class imbalance. A corollary of this observation is that a larger number of examples is necessary and sufficient to address class imbalance, a finding we also illustrate empirically.

2021 ◽  
Vol 5 (1) ◽  
pp. 75-91
Author(s):  
Sri Astuti Thamrin ◽  
Dian Sidik ◽  
Hedi Kuswanto ◽  
Armin Lawi ◽  
Ansariadi Ansariadi

The accuracy of the data class is very important in classification with a machine learning approach. The more accurate the existing data sets and classes, the better the output generated by machine learning. In fact, classification can experience imbalance class data in which each class does not have the same portion of the data set it has. The existence of data imbalance will affect the classification accuracy. One of the easiest ways to correct imbalanced data classes is to balance it. This study aims to explore the problem of data class imbalance in the medium case dataset and to address the imbalance of data classes as well. The Synthetic Minority Over-Sampling Technique (SMOTE) method is used to overcome the problem of class imbalance in obesity status in Indonesia 2013 Basic Health Research (RISKESDAS). The results show that the number of obese class (13.9%) and non-obese class (84.6%). This means that there is an imbalance in the data class with moderate criteria. Moreover, SMOTE with over-sampling 600% can improve the level of minor classes (obesity). As consequence, the classes of obesity status balanced. Therefore, SMOTE technique was better compared to without SMOTE in exploring the obesity status of Indonesia RISKESDAS 2013.


2020 ◽  
Vol 6 ◽  
Author(s):  
Jaime de Miguel Rodríguez ◽  
Maria Eugenia Villafañe ◽  
Luka Piškorec ◽  
Fernando Sancho Caparrini

Abstract This work presents a methodology for the generation of novel 3D objects resembling wireframes of building types. These result from the reconstruction of interpolated locations within the learnt distribution of variational autoencoders (VAEs), a deep generative machine learning model based on neural networks. The data set used features a scheme for geometry representation based on a ‘connectivity map’ that is especially suited to express the wireframe objects that compose it. Additionally, the input samples are generated through ‘parametric augmentation’, a strategy proposed in this study that creates coherent variations among data by enabling a set of parameters to alter representative features on a given building type. In the experiments that are described in this paper, more than 150 k input samples belonging to two building types have been processed during the training of a VAE model. The main contribution of this paper has been to explore parametric augmentation for the generation of large data sets of 3D geometries, showcasing its problems and limitations in the context of neural networks and VAEs. Results show that the generation of interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour, promising advances are presented.


2019 ◽  
Author(s):  
Dominic Simm ◽  
Klas Hatje ◽  
Stephan Waack ◽  
Martin Kollmar

AbstractCoiled-coil regions were among the first protein motifs described structurally and theoretically. The beauty and simplicity of the motif gives hope to detecting coiled-coil regions with reasonable accuracy and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled-coil prediction tools with respect to the most comprehensive reference data set available, the entire Protein Data Base (PDB), down to each amino acid and its secondary structure. Apart from the thirtyfold difference in number of predicted coiled-coils the tools strongly vary in their predictions, across structures and within structures. The evaluation of the false discovery rate and Matthews correlation coefficient, a widely used performance metric for imbalanced data sets, suggests that the tested tools have only limited applicability for large data sets. Coiled-coil predictions strongly impact the functional characterization of proteins, are used for functional genome annotation, and should therefore be supported and validated by additional information.


2020 ◽  
Author(s):  
Adam Pond ◽  
Seongwon Hwang ◽  
Berta Verd ◽  
Benjamin Steventon

AbstractMachine learning approaches are becoming increasingly widespread and are now present in most areas of research. Their recent surge can be explained in part due to our ability to generate and store enormous amounts of data with which to train these models. The requirement for large training sets is also responsible for limiting further potential applications of machine learning, particularly in fields where data tend to be scarce such as developmental biology. However, recent research seems to indicate that machine learning and Big Data can sometimes be decoupled to train models with modest amounts of data. In this work we set out to train a CNN-based classifier to stage zebrafish tail buds at four different stages of development using small information-rich data sets. Our results show that two and three dimensional convolutional neural networks can be trained to stage developing zebrafish tail buds based on both morphological and gene expression confocal microscopy images, achieving in each case up to 100% test accuracy scores. Importantly, we show that high accuracy can be achieved with data set sizes of under 100 images, much smaller than the typical training set size for a convolutional neural net. Furthermore, our classifier shows that it is possible to stage isolated embryonic structures without the need to refer to classic developmental landmarks in the whole embryo, which will be particularly useful to stage 3D culture in vitro systems such as organoids. We hope that this work will provide a proof of principle that will help dispel the myth that large data set sizes are always required to train CNNs, and encourage researchers in fields where data are scarce to also apply ML approaches.Author summaryThe application of machine learning approaches currently hinges on the availability of large data sets to train the models with. However, recent research has shown that large data sets might not always be required. In this work we set out to see whether we could use small confocal microscopy image data sets to train a convolutional neural network (CNN) to stage zebrafish tail buds at four different stages in their development. We found that high test accuracies can be achieved with data set sizes of under 100 images, much smaller than the typical training set size for a CNN. This work also shows that we can robustly stage the embryonic development of isolated structures, without the need to refer back to landmarks in the tail bud. This constitutes an important methodological advance for staging organoids and other 3D culture in vitro systems. This work proves that prohibitively large data sets are not always required to train CNNs, and we hope will encourage others to apply the power of machine learning to their areas of study even if data are scarce.


2021 ◽  
Vol 12 (1) ◽  
pp. 1-17
Author(s):  
Swati V. Narwane ◽  
Sudhir D. Sawarkar

Class imbalance is the major hurdle for machine learning-based systems. Data set is the backbone of machine learning and must be studied to handle the class imbalance. The purpose of this paper is to investigate the effect of class imbalance on the data sets. The proposed methodology determines the model accuracy for class distribution. To find possible solutions, the behaviour of an imbalanced data set was investigated. The study considers two case studies with data set divided balanced to unbalanced class distribution. Testing of the data set with trained and test data was carried out for standard machine learning algorithms. Model accuracy for class distribution was measured with the training data set. Further, the built model was tested with individual binary class. Results show that, for the improvement of the system performance, it is essential to work on class imbalance problems. The study concludes that the system produces biased results due to the majority class. In the future, the multiclass imbalance problem can be studied using advanced algorithms.


2020 ◽  
pp. 0887302X2093119 ◽  
Author(s):  
Rachel Rose Getman ◽  
Denise Nicole Green ◽  
Kavita Bala ◽  
Utkarsh Mall ◽  
Nehal Rawat ◽  
...  

With the proliferation of digital photographs and the increasing digitization of historical imagery, fashion studies scholars must consider new methods for interpreting large data sets. Computational methods to analyze visual forms of big data have been underway in the field of computer science through computer vision, where computers are trained to “read” images through a process called machine learning. In this study, fashion historians and computer scientists collaborated to explore the practical potential of this emergent method by examining a trend related to one particular fashion item—the baseball cap—across two big data sets—the Vogue Runway database (2000–2018) and the Matzen et al. Streetstyle-27K data set (2013–2016). We illustrate one implementation of high-level concept recognition to map a fashion trend. Tracking trend frequency helps visualize larger patterns and cultural shifts while creating sociohistorical records of aesthetics, which benefits fashion scholars and industry alike.


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2013 ◽  
Vol 756-759 ◽  
pp. 3652-3658
Author(s):  
You Li Lu ◽  
Jun Luo

Under the study of Kernel Methods, this paper put forward two improved algorithm which called R-SVM & I-SVDD in order to cope with the imbalanced data sets in closed systems. R-SVM used K-means algorithm clustering space samples while I-SVDD improved the performance of original SVDD by imbalanced sample training. Experiment of two sets of system call data set shows that these two algorithms are more effectively and R-SVM has a lower complexity.


Author(s):  
Lior Shamir

Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope (HST) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 936
Author(s):  
Jianli Shao ◽  
Xin Liu ◽  
Wenqing He

Imbalanced data exist in many classification problems. The classification of imbalanced data has remarkable challenges in machine learning. The support vector machine (SVM) and its variants are popularly used in machine learning among different classifiers thanks to their flexibility and interpretability. However, the performance of SVMs is impacted when the data are imbalanced, which is a typical data structure in the multi-category classification problem. In this paper, we employ the data-adaptive SVM with scaled kernel functions to classify instances for a multi-class population. We propose a multi-class data-dependent kernel function for the SVM by considering class imbalance and the spatial association among instances so that the classification accuracy is enhanced. Simulation studies demonstrate the superb performance of the proposed method, and a real multi-class prostate cancer image dataset is employed as an illustration. Not only does the proposed method outperform the competitor methods in terms of the commonly used accuracy measures such as the F-score and G-means, but also successfully detects more than 60% of instances from the rare class in the real data, while the competitors can only detect less than 20% of the rare class instances. The proposed method will benefit other scientific research fields, such as multiple region boundary detection.


Sign in / Sign up

Export Citation Format

Share Document