scholarly journals Learning Disentangled Representation with Pairwise Independence

Author(s):  
Zejian Li ◽  
Yongchuan Tang ◽  
Wei Li ◽  
Yongxing He

Unsupervised disentangled representation learning is one of the foundational methods to learn interpretable factors in the data. Existing learning methods are based on the assumption that disentangled factors are mutually independent and incorporate this assumption with the evidence lower bound. However, our experiment reveals that factors in real-world data tend to be pairwise independent. Accordingly, we propose a new method based on a pairwise independence assumption to learn the disentangled representation. The evidence lower bound implicitly encourages mutual independence of latent codes so it is too strong for our assumption. Therefore, we introduce another lower bound in our method. Extensive experiments show that our proposed method gives competitive performances as compared with other state-of-the-art methods.

2018 ◽  
Vol 24 (3) ◽  
pp. 984-1003 ◽  
Author(s):  
Aistis RAUDYS ◽  
Židrina PABARŠKAITĖ

Smoothing time series allows removing noise. Moving averages are used in finance to smooth stock price series and forecast trend direction. We propose optimised custom moving average that is the most suitable for stock time series smoothing. Suitability criteria are defined by smoothness and accuracy. Previous research focused only on one of the two criteria in isolation. We define this as multi-criteria Pareto optimisation problem and compare the proposed method to the five most popular moving average methods on synthetic and real world stock data. The comparison was performed using unseen data. The new method outperforms other methods in 99.5% of cases on synthetic and in 91% on real world data. The method allows better time series smoothing with the same level of accuracy as traditional methods, or better accuracy with the same smoothness. Weights optimised on one stock are very similar to weights optimised for any other stock and can be used interchangeably. Traders can use the new method to detect trends earlier and increase the profitability of their strategies. The concept is also applicable to sensors, weather forecasting, and traffic prediction where both the smoothness and accuracy of the filtered signal are important.


Author(s):  
Xuan Wu ◽  
Qing-Guo Chen ◽  
Yao Hu ◽  
Dengbao Wang ◽  
Xiaodong Chang ◽  
...  

Multi-view multi-label learning serves an important framework to learn from objects with diverse representations and rich semantics. Existing multi-view multi-label learning techniques focus on exploiting shared subspace for fusing multi-view representations, where helpful view-specific information for discriminative modeling is usually ignored. In this paper, a novel multi-view multi-label learning approach named SIMM is proposed which leverages shared subspace exploitation and view-specific information extraction. For shared subspace exploitation, SIMM jointly minimizes confusion adversarial loss and multi-label loss to utilize shared information from all views. For view-specific information extraction, SIMM enforces an orthogonal constraint w.r.t. the shared subspace to utilize view-specific discriminative information. Extensive experiments on real-world data sets clearly show the favorable performance of SIMM against other state-of-the-art multi-view multi-label learning approaches.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1149
Author(s):  
Thapana Boonchoo ◽  
Xiang Ao ◽  
Qing He

Motivated by the proliferation of trajectory data produced by advanced GPS-enabled devices, trajectory is gaining in complexity and beginning to embroil additional attributes beyond simply the coordinates. As a consequence, this creates the potential to define the similarity between two attribute-aware trajectories. However, most existing trajectory similarity approaches focus only on location based proximities and fail to capture the semantic similarities encompassed by these additional asymmetric attributes (aspects) of trajectories. In this paper, we propose multi-aspect embedding for attribute-aware trajectories (MAEAT), a representation learning approach for trajectories that simultaneously models the similarities according to their multiple aspects. MAEAT is built upon a sentence embedding algorithm and directly learns whole trajectory embedding via predicting the context aspect tokens when given a trajectory. Two kinds of token generation methods are proposed to extract multiple aspects from the raw trajectories, and a regularization is devised to control the importance among aspects. Extensive experiments on the benchmark and real-world datasets show the effectiveness and efficiency of the proposed MAEAT compared to the state-of-the-art and baseline methods. The results of MAEAT can well support representative downstream trajectory mining and management tasks, and the algorithm outperforms other compared methods in execution time by at least two orders of magnitude.


2020 ◽  
Author(s):  
Mikel Joaristi

Unsupervised Graph Representation Learning methods learn a numerical representation of the nodes in a graph. The generated representations encode meaningful information about the nodes' properties, making them a powerful tool for tasks in many areas of study, such as social sciences, biology or communication networks. These methods are particularly interesting because they facilitate the direct use of standard Machine Learning models on graphs. Graph representation learning methods can be divided into two main categories depending on the information they encode, methods preserving the nodes connectivity information, and methods preserving nodes' structural information. Connectivity-based methods focus on encoding relationships between nodes, with neighboring nodes being closer together in the resulting latent space. On the other hand, structure-based methods generate a latent space where nodes serving a similar structural function in the network are encoded close to each other, independently of them being connected or even close to each other in the graph. While there are a lot of works that focus on preserving nodes' connectivity information, only a few works study the problem of encoding nodes' structure, specially in an unsupervised way. In this dissertation, we demonstrate that properly encoding nodes' structural information is fundamental for many real-world applications, as it can be leveraged to successfully solve many tasks where connectivity-based methods fail. One concrete example is presented first. In this example, the task consists of detecting malicious entities in a real-world financial network. We show that to solve this problem, connectivity information is not enough and show how leveraging structural information provides considerable performance improvements. This particular example pinpoints the need for further research on the area of structural graph representation learning, together with the limitations of the previous state-of-the-art. We use the acquired knowledge as a starting point and inspiration for the research and development of three independent unsupervised structural graph representation learning methods: Structural Iterative Representation learning approach for Graph Nodes (SIR-GN), Structural Iterative Lexicographic Autoencoded Node Representation (SILA), and Sparse Structural Node Representation (SparseStruct). We show how each of our methods tackles specific limitations on the previous state-of-the-art on structural graph representation learning such as scalability, representation meaning, and lack of formal proof that guarantees the preservation of structural properties. We provide an extensive experimental section where we compare our three proposed methods to the current state-of-the-art on both connectivity-based and structure-based representation learning methods. Finally, in this dissertation, we look at extensions of the basic structural graph representation learning problem. We study the problem of temporal structural graph representation. We also provide a method for representation explainability.


2014 ◽  
Vol 17 (06) ◽  
pp. 1450018 ◽  
Author(s):  
XIN LIU ◽  
WEICHU LIU ◽  
TSUYOSHI MURATA ◽  
KEN WAKITA

There has been a surge of interest in community detection in homogeneous single-relational networks which contain only one type of nodes and edges. However, many real-world systems are naturally described as heterogeneous multi-relational networks which contain multiple types of nodes and edges. In this paper, we propose a new method for detecting communities in such networks. Our method is based on optimizing the composite modularity, which is a new modularity proposed for evaluating partitions of a heterogeneous multi-relational network into communities. Our method is parameter-free, scalable, and suitable for various networks with general structure. We demonstrate that it outperforms the state-of-the-art techniques in detecting pre-planted communities in synthetic networks. Applied to a real-world Digg network, it successfully detects meaningful communities.


Author(s):  
Ruida Zhou ◽  
Chao Gan ◽  
Jing Yang ◽  
Cong Shen

In this paper, we propose a cost-aware cascading bandits model, a new variant of multi-armed bandits with cascading feedback, by considering the random cost of pulling arms. In each step, the learning agent chooses an {\it ordered} list of items and \congr{examines} them sequentially, until certain stopping condition is satisfied. Our objective is then to maximize the expected {\it net reward} in each step, i.e., the reward obtained in each step minus the total cost incurred in examining the items, by deciding the ordered list of items, as well as when to stop examination. We study both the offline and online settings, depending on whether the state and cost statistics of the items are known beforehand. For the offline setting, we show that the Unit Cost Ranking with Threshold 1 (UCR-T1) policy is optimal. For the online setting, we propose a Cost-aware Cascading Upper Confidence Bound (CC-UCB) algorithm, and show that the cumulative regret scales in $O(\log T)$. We also provide a lower bound for all $\alpha$-consistent policies, which scales in $\Omega(\log T)$ and matches our upper bound. The performance of the CC-UCB algorithm is evaluated with both synthetic and real-world data.


Author(s):  
Zhi Lu ◽  
Yang Hu ◽  
Bing Zeng

Factorization models have been extensively used for recovering the missing entries of a matrix or tensor. However, directly computing all of the entries using the learned factorization models is prohibitive when the size of the matrix/tensor is large. On the other hand, in many applications, such as collaborative filtering, we are only interested in a few entries that are the largest among them. In this work, we propose a sampling-based approach for finding the top entries of a tensor which is decomposed by the CANDECOMP/PARAFAC model. We develop an algorithm to sample the entries with probabilities proportional to their values. We further extend it to make the sampling proportional to the $k$-th power of the values, amplifying the focus on the top ones. We provide theoretical analysis of the sampling algorithm and evaluate its performance on several real-world data sets. Experimental results indicate that the proposed approach is orders of magnitude faster than exhaustive computing. When applied to the special case of searching in a matrix, it also requires fewer samples than the other state-of-the-art method.


2020 ◽  
Vol 34 (04) ◽  
pp. 4691-4698
Author(s):  
Shu Li ◽  
Wen-Tao Li ◽  
Wei Wang

In many real-world applications, the data have several disjoint sets of features and each set is called as a view. Researchers have developed many multi-view learning methods in the past decade. In this paper, we bring Graph Convolutional Network (GCN) into multi-view learning and propose a novel multi-view semi-supervised learning method Co-GCN by adaptively exploiting the graph information from the multiple views with combined Laplacians. Experimental results on real-world data sets verify that Co-GCN can achieve better performance compared with state-of-the-art multi-view semi-supervised methods.


2017 ◽  
Vol 20 (9) ◽  
pp. A775
Author(s):  
S Gurnot ◽  
J Tardu ◽  
B Hirtz ◽  
S Soudani ◽  
M Defrance

Sign in / Sign up

Export Citation Format

Share Document